30 research outputs found

    Severe peripheral joint laxity is a distinctive clinical feature of spondylodysplastic-ehlers-danlos syndrome (Eds)-b4galt7 and spondylodysplastic-eds-b3galt6

    Get PDF
    Variations in genes encoding for the enzymes responsible for synthesizing the linker region of proteoglycans may result in recessive conditions known as “linkeropathies”. The two phenotypes related to mutations in genes B4GALT7 and B3GALT6 (encoding for galactosyltransferase I and II respectively) are similar, characterized by short stature, hypotonia, joint hypermobility, skeletal features and a suggestive face with prominent forehead, thin soft tissue and prominent eyes. The most outstanding feature of these disorders is the combination of severe connective tissue involvement, often manifesting in newborns and infants, and skeletal dysplasia that becomes apparent during childhood. Here, we intend to more accurately define some of the clinical features of B4GALT7 and B3GALT6-related conditions and underline the extreme hypermobility of distal joints and the soft, doughy skin on the hands and feet as features that may be useful as the first clues for a correct diagnosis

    Mowat-Wilson syndrome: growth charts

    Get PDF
    Background Mowat-Wilson syndrome (MWS; OMIM #235730) is a genetic condition caused by heterozygous mutations or deletions of theZEB2gene. It is characterized by moderate-severe intellectual disability, epilepsy, Hirschsprung disease and multiple organ malformations of which congenital heart defects and urogenital anomalies are the most frequent ones. To date, a clear description of the physical development of MWS patients does not exist. The aim of this study is to provide up-to-date growth charts specific for infants and children with MWS. Charts for males and females aged from 0 to 16 years were generated using a total of 2865 measurements from 99 MWS patients of different ancestries. All data were collected through extensive collaborations with the Italian MWS association (AIMW) and the MWS Foundation. The GAMLSS package for the R statistical computing software was used to model the growth charts. Height, weight, body mass index (BMI) and head circumference were compared to those from standard international growth charts for healthy children. Results In newborns, weight and length were distributed as in the general population, while head circumference was slightly smaller, with an average below the 30th centile. Up to the age of 7 years, weight and height distribution was shifted to slightly lower values than in the general population; after that, the difference increased further, with 50% of the affected children below the 5th centile of the general population. BMI distribution was similar to that of non-affected children until the age of 7 years, at which point values in MWS children increased with a less steep slope, particularly in males. Microcephaly was sometimes present at birth, but in most cases it developed gradually during infancy; many children had a small head circumference, between the 3rd and the 10th centile, rather than being truly microcephalic (at least 2 SD below the mean). Most patients were of slender build. Conclusions These charts contribute to the understanding of the natural history of MWS and should assist pediatricians and other caregivers in providing optimal care to MWS individuals who show problems related to physical growth. This is the first study on growth in patients with MWS

    Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care

    Get PDF
    Purpose: Mowat–Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype–phenotype correlations of MWS. Methods: In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations. Results: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluati

    Different molecular behavior of CD40 mutants causing hyper-IgM syndrome

    No full text
    PubMed ID: 20702779CD40/CD40 ligand (CD40L) cross-talk plays a key role in B-cell terminal maturation in the germinal centers. Genetic defects affecting CD40 cause a rare form of hyper-immunoglobulin M (IgM) syndrome, a disorder characterized by low or absent serum IgG and IgA, associated with recurrent infections. We previously reported on a few patients with homozygous CD40 mutations resulting in lack or severe reduction of CD40 cell surface expression. Here we characterize the 3 CD40 mutants due to missense mutations or small inframe deletions, and show that the mutated proteins are synthesized but retained in the endoplasmic reticulum (ER), likely due to protein misfolding. Interestingly, the intracellular behavior and fate differ significantly among the mutants: progressive accumulation of the P2 mutant causes endoplasmic reticulum stress and the activation of an unfolded protein response; the mutant P4 is rather efficiently disposed by the ER-associated degradation pathway, while the P5 mutant partially negotiates transport to the plasma membrane, and is competent for CD40L binding. Interestingly, this latter mutant activates downstream signaling elements when overexpressed in transfected cells. These results give new important insights into the molecular pathogenesis of HIGM disease, and suggest that CD40 deficiency can also be regarded as an ER-storage disease. © 2010 by The American Society of Hematology

    A monoallelic SEC23A variant E599K associated with cranio-lenticulo-sutural dysplasia.

    No full text
    Cranio-lenticulo-sutural dysplasia (CLSD; MIM 607812) is a rare or underdiagnosed condition, as only two families have been reported. The original family (Boyadjiev et al., Human Genetics, 2003, 113, 1-9 and Boyadjiev et al., Nature Genetics, 2006, 38, 1192-1197) showed recessive inheritance of the condition with a biallelic SEC23A missense variant in affected individuals. In contrast, another child with sporadic CLSD had a monoallelic SEC23A variant inherited from the reportedly unaffected father (Boyadjiev et al., Clinical Genetics, 2011, 80, 169-176), raising questions on possible digenism. Here, we report a 2-month-old boy seen because of large fontanels with wide cranial sutures, a large forehead, hypertelorism, a thin nose, a high arched palate, and micrognathia. His mother was clinically unremarkable, while his father had a history of large fontanels in infancy who had closed only around age 10 years; he also had a large forehead, hypertelorism, a thin, beaked nose and was operated for bilateral glaucoma with exfoliation of the lens capsule. Trio genome sequencing and familial segregation revealed a monoallelic c.1795G > A transition in SEC23A that was de novo in the father and transmitted to the proband. The variant predicts a nonconservative substitution (p.E599K) in an ultra-conserved residue that is seen in 3D models of yeast SEC23 to be involved in direct binding between SEC23 and SAR1 subunits of the coat protein complex II coat. This observation confirms the link between SEC23A variants and CLSD but suggests that in addition to the recessive inheritance described in the original family, SEC23A variants may result in dominant inheritance of CLSD, possibly by a dominant-negative disruptive effect on the SEC23 multimer

    Improving the phenotype description of Basel-Vanagaite-Smirin-Yosef syndrome, MED25-related: polymicrogyria as a distinctive neuroradiological finding

    No full text
    Basel-Vanagaite-Smirin-Yosef syndrome (BVSYS) is an extremely rare autosomal recessive genetic disorder caused by variants in the MED25 gene. It is characterized by severe developmental delay and variable craniofacial, neurological, ocular, and cardiac anomalies. Since 2015, through whole exome sequencing, 20 patients have been described with common clinical features and biallelic variants in MED25, leading to a better definition of the phenotype associated with BVSYS. We report two young sisters, born to consanguineous parents, presenting with intellectual disability, neurological findings, and dysmorphic features typical of BVSYS, and also with bilateral perisylvian polymicrogyria. The younger sister died at the age of 1 year without autoptic examination. Whole exome sequencing detected a homozygous frameshift variant in the MED25 gene: NM_030973.3:c.1778_1779delAG, p.(Gln593Argfs). This report further delineates the most common clinical features of BVSYS and points to polymicrogyria as a distinctive neuroradiological feature of this syndrome
    corecore