170 research outputs found

    Nonpoint pollution of surface waters with phosphorus and nitrogen

    Get PDF
    Agriculture and urban activities are major sources of phosphorus and nitrogen to aquatic ecosystems. Atmospheric deposition further contributes as a source of N. These nonpoint inputs of nutrients are difficult to measure and regulate because they derive from activities dispersed over wide areas of land and are variable in time due to effects of weather. In aquatic ecosystems, these nutrients cause diverse problems such as toxic algal blooms, loss of oxygen, fish kills, loss of biodiversity (including species important for commerce and recreation), loss of aquatic plant beds and coral reefs, and other problems. Nutrient enrichment seriously degrades aquatic ecosystems and impairs the use of water for drinking, industry, agriculture, recreation, and other purposes. Based on our review of the scientific literature, we are certain that (1) eutrophication is a widespread problem in rivers, lakes, estuaries, and coastal oceans, caused by overenrichment with P and N; (2) nonpoint pollution, a major source of P and N to surface waters of the United States, results primarily from agriculture and urban activity, including industry; (3) inputs of P and N to agriculture in the form of fertilizers exceed outputs in produce in the United States and many other nations; (4) nutrient flows to aquatic ecosystems are directly related to animal stocking densities, and under high livestock densities, manure production exceeds the needs of crops to which the manure is applied; (5) excess fertilization and manure production cause a P surplus to accumulate in soil, some of which is transported to aquatic ecosystems; and (6) excess fertilization and manure production on agricultural lands create surplus N, which is mobile in many soils and often leaches to downstream aquatic ecosystems, and which can also volatilize to the atmosphere, redepositing elsewhere and eventually reaching aquatic ecosystems. If current practices continue, nonpoint pollution of surface waters is virtually certain to increase in the future. Such an outcome is not inevitable, however, because a number of technologies, land use practices, and conservation measures are capable of decreasing the flow of nonpoint P and N into surface waters. From our review of the available scientific information, we are confident that: (1) nonpoint pollution of surface waters with P and N could be reduced by reducing surplus nutrient flows in agricultural systems and processes, reducing agricultural and urban runoff by diverse methods, and reducing N emissions from fossil fuel burning; and (2) eutrophication can be reversed by decreasing input rates of P and N to aquatic ecosystems, but rates of recovery are highly variable among water bodies. Often, the eutrophic state is persistent, and recovery is slow

    NLOAD : an interactive, web-based modeling tool for nitrogen management in estuaries

    Get PDF
    Author Posting. © Ecological Society of America, 2007. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17, Supple. (2007): S17–S30, doi:10.1890/05-1460.1.Eutrophication of estuaries is an increasing global concern that requires development of new tools to identify causes, quantify conditions, and propose management options that address this environmental problem. Since eutrophication is often associated with increased inputs of land-derived nitrogen to estuaries, we developed NLOAD, a user-friendly, web-based tool that brings together six different published models that predict nitrogen loading to estuaries and two models that estimate nitrogen concentrations in coastal waters. Here we describe each of the models, demonstrate how NLOAD is designed to function, and then use the models in NLOAD to predict nitrogen loads to Barnegat Bay, New Jersey (USA). The four models that we used to estimate nitrogen loads to Barnegat Bay, when adjusted, all had similar results that matched well with measured values and indicated that Barnegat Bay receives roughly 26 kg N·ha−1·yr−1. Atmospheric deposition was the dominant source of nitrogen to Barnegat Bay, followed by fertilizer nitrogen. Wastewater in Barnegat Bay is diverted to an offshore outfall and contributes no nitrogen to the system. The NLOAD tool has an additional feature that allows managers to assess the effectiveness of a variety of management options to reduce nitrogen loads. We demonstrate this feature of NLOAD through simulations in which fertilizer inputs to the Barnegat Bay watershed are reduced. Even modest cutbacks in the use of fertilizers on agricultural fields and lawns can be shown to reduce the amount of N entering Barnegat Bay.Support for the NLOAD tool came from the Cooperative Institute for Coastal and Estuarine Environmental Technologies (CICEET, CICEET-UNH grants #02-610 and #04-833). Additional funding was received from Environmental Defense

    Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake.

    Get PDF
    During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent. Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    Real Life Clinical Management and Survival in Advanced Cutaneous Melanoma: The Italian Clinical National Melanoma Registry Experience

    Get PDF
    Background: Cutaneous melanoma (CM) is one of the most aggressive types of skin cancer. Currently, innovative approaches such as target therapies and immunotherapies have been introduced in clinical practice. Data of clinical trials and real life studies that evaluate the outcomes of these therapeutic associations are necessary to establish their clinical utility. The aim of this study is to investigate the types of oncological treatments employed in the real-life clinical management of patients with advanced CM in several Italian centers, which are part of the Clinical National Melanoma Registry (CNMR). Methods: Melanoma-specific survival and overall survival were calculated. Multivariate Cox regression models were used to estimate the hazard ratios adjusting for confounders and other prognostic factors. Results: The median follow-up time was 36 months (range 1.2-185.1). 787 CM were included in the analysis with completed information about therapies. All types of immunotherapy showed a significant improved survival compared with all other therapies (p=0.001). 75% was the highest reduction of death reached by anti-PD-1 (HR=0.25), globally immunotherapy was significantly associated with improved survival, either for anti-CTLA4 monotherapy or combined with anti-PD-1 (HR=0.47 and 0.26, respectively) and BRAFI+MEKI (HR=0.62). Conclusions: The nivolumab/pembrolizumab in combination of ipilimumab and the addition of ant-MEK to the BRAFi can be considered the best therapies to improve survival in a real-world-population. The CNMR can complement clinical registries with the intent of improving cancer management and standardizing cancer treatment

    Periodic Host Absence Can Select for Higher or Lower Parasite Transmission Rates

    Get PDF
    This paper explores the effect of discontinuous periodic host absence on the evolution of pathogen transmission rates by using Ro maximisation techniques. The physiological consequence of an increased transmission rate can be either an increased virulence, i.e. there is a transmission-virulence trade-off or ii) a reduced between season survival, i.e. there is a transmission-survival trade-off. The results reveal that the type of trade-off determines the direction of selection, with relatively longer periods of host absence selecting for higher transmission rates in the presence of a trade-off between transmission and virulence but lower transmission rates in the presence of a trade-of between transmission and between season survival. The fact that for the transmission-virulence trade-off both trade-off parameters operate during host presence whereas for the transmission-survival trade-off one operates during host presence (transmission) and the other (survival) during the period of host absence is the main cause for this difference in selection direction. Moreover, the period of host absence seems to be the key determinant of the pathogens transmission rate. Comparing plant patho-systems with contrasting biological features suggests that airborne plant pathogen respond differently to longer periods of host absence than soil-borne plant pathogens

    Nationwide multidisciplinary consensus on the clinical management of Merkel cell carcinoma: a Delphi panel

    Get PDF
    Merkel cell carcinoma (MCC) is a rare and highly aggressive cutaneous neuroendocrine carcinoma. The MCC incidence rate has rapidly grown over the last years, with Italy showing the highest increase among European countries. This malignancy has been the focus of active scientific research over the last years, focusing mainly on pathogenesis, new therapeutic trials and diagnosis. A national expert board developed 28 consensus statements that delineated the evolution of disease management and highlighted the paradigm shift towards the use of immunological strategies, which were then presented to a national MCC specialists panel for review. Sixty-five panelists answered both rounds of the questionnaire. The statements were divided into five areas: a high level of agreement was reached in the area of guidelines and multidisciplinary management, even if in real life the multidisciplinary team was not always represented by all the specialists. In the diagnostic pathway area, imaging played a crucial role in diagnosis and initial staging, planning for surgery or radiation therapy, assessment of treatment response and surveillance of recurrence and metastases. Concerning diagnosis, the usefulness of Merkel cell polyomavirus is recognized, but the agreement and consensus regarding the need for cytokeratin evaluation appears greater. Regarding the areas of clinical management and follow-up, patients with MCC require customized treatment. There was a wide dispersion of results and the suggestion to increase awareness about the adjuvant radiation therapy. The panelists unanimously agreed that the information concerning avelumab provided by the JAVELIN Merkel 200 study is adequate and reliable and that the expanded access program data could have concrete clinical implications. An immunocompromised patient with advanced MCC can be treated with immunotherapy after multidisciplinary risk/benefit assessment, as evidenced by real-world analysis and highlighted in the guidelines. A very high consensus regarding the addition of radiotherapy to treat the ongoing focal progression of immunotherapy was observed. This paper emphasizes the importance of collaboration and communication among the interprofessional team members and encourages managing patients with MCC within dedicated multidisciplinary teams. New insights in the treatment of this challenging cancer needs the contribution of many and different experts

    The role of sentinel node tumor burden in modeling the prognosis of melanoma patients with positive sentinel node biopsy: an Italian melanoma intergroup study (N = 2,086)

    Get PDF
    Background The management of melanoma patients with metastatic melanoma in the sentinel nodes (SN) is evolving based on the results of trials questioning the impact of completion lymph node dissection (CLND) and demonstrating the efficacy of new adjuvant treatments. In this landscape, new prognostic tools for fine risk stratification are eagerly sought to optimize the therapeutic path of these patients. Methods A retrospective cohort of 2,086 patients treated with CLND after a positive SN biopsy in thirteen Italian Melanoma Centers was reviewed. Overall survival (OS) was the outcome of interest; included independent variables were the following: age, gender, primary melanoma site, Breslow thickness, ulceration, sentinel node tumor burden (SNTB), number of positive SN, non-sentinel lymph nodes (NSN) status. Univariate and multivariate survival analyses were performed using the Cox proportional hazard regression model. Results The 3-year, 5-year and 10-year OS rates were 79%, 70% and 54%, respectively. At univariate analysis, all variables, except for primary melanoma body site, were found to be statistically significant prognostic factors. Multivariate Cox regression analysis indicated that older age (P &lt; 0.0001), male gender (P = 0.04), increasing Breslow thickness (P &lt; 0.0001), presence of ulceration (P = 0.004), SNTB size (P &lt; 0.0001) and metastatic NSN (P &lt; 0.0001) were independent negative predictors of OS. Conclusion The above results were utilized to build a nomogram in order to ease the practical implementation of our prognostic model, which might improve treatment personalization

    Physical Habitat and Fish Assemblage Relationships with Landscape Variables at Multiple Spatial Scales in Wadeable Iowa Streams

    Get PDF
    Landscapes in Iowa and other midwestern states have been profoundly altered by conversion of native prairies to agriculture. We analyzed landscape data collected at multiple spatial scales to explore relationships with reach-scale physical habitat and fish assemblage data from 93 randomly selected sites on second- through fifth-order wadeable Iowa streams. Ordination of sites by physical habitat showed significant gradients of channel shape, habitat complexity, substrate composition, and stream size. Several landscape variables were significantly associated with the physical habitat ordination. Row crop land use was associated with fine substrates and steep bank angles, whereas wetland land cover and greater sinuosity and catchment land area were associated with complex channel and bank morphology and greater residual pool volume, woody debris, and canopy cover. Thirteen landscape variables were significant predictors of physical habitat variables in multiple linear regressions, with adjusted R 2 values ranging from 0.07 to 0.74. Inclusion of landscape variables with physical habitat variables in multiple regression models predicting fish assemblage metrics and a fish index of biotic integrity resulted in negligible improvements over models based on only physical habitat variables. Physical habitat in wadeable Iowa streams is strongly associated with landscape characteristics. Results of this study and previous studies suggest that (1) landscape factors directly influence physical habitat, (2) physical habitat directly influences fish assemblages, and (3) the influence of landscape factors on fish assemblages is primarily indirect. Understanding how landscape factors, such as human land use, influence physical habitat and fish assemblages will help managers make more informed decisions for improving Iowa\u27s wadeable streams
    • …
    corecore