124 research outputs found

    On the spectral problem of N=4 SYM with orthogonal or symplectic gauge group

    Full text link
    We study the spectral problem of N=4 SYM with gauge group SO(N) and Sp(N). At the planar level, the difference to the case of gauge group SU(N) is only due to certain states being projected out, however at the non-planar level novel effects appear: While 1/N-corrections in the SU(N) case are always associated with splitting and joining of spin chains, this is not so for SO(N) and Sp(N). Here the leading 1/N-corrections, which are due to non-orientable Feynman diagrams in the field theory, originate from a term in the dilatation operator which acts inside a single spin chain. This makes it possible to test for integrability of the leading 1/N-corrections by standard (Bethe ansatz) means and we carry out various such tests. For orthogonal and symplectic gauge group the dual string theory lives on the orientifold AdS5xRP5. We discuss various issues related to semi-classical strings on this background.Comment: 25 pages, 3 figures. v2: Minor clarifications, section 5 expande

    Wave functions and correlation functions for GKP strings from integrability

    Full text link
    We develop a general method of computing the contribution of the vertex operators to the semi-classical correlation functions of heavy string states, based on the state-operator correspondence and the integrable structure of the system. Our method requires only the knowledge of the local behavior of the saddle point configuration around each vertex insertion point and can be applied to cases where the precise forms of the vertex operators are not known. As an important application, we compute the contributions of the vertex operators to the three-point functions of the large spin limit of the Gubser-Klebanov-Polyakov (GKP) strings in AdS3AdS_3 spacetime, left unevaluated in our previous work [arXiv:1110.3949] which initiated such a study. Combining with the finite part of the action already computed previously and with the newly evaluated divergent part of the action, we obtain finite three-point functions with the expected dependence of the target space boundary coordinates on the dilatation charge and the spin.Comment: 80 pages, 7 figures, v2: typos and minor errors corrected, a reference added, v3: typos and a reference corrected, published versio

    Review of AdS/CFT Integrability, Chapter IV.3: N=6 Chern-Simons and Strings on AdS4xCP3

    Full text link
    We review the duality and integrability of N=6 superconformal Chern-Simons theory in three dimensions and IIA superstring theory on the background AdS4xCP3. We introduce both of these models and describe how their degrees of freedom are mapped to excitations of a long-range integrable spin-chain. Finally, we discuss the properties of the Bethe equations, the S-matrix and the algebraic curve that are special to this correspondence and differ from the case of N=4 SYM theory and strings on AdS5xS5.Comment: 22 pages, see also overview article arXiv:1012.3982, v2: references to other chapters updated, v3: references added, v4: brief discussion of giant magnons added, further minor changes, published version, v5: union of v3 and v4 because changes made in v3 were accidentally lost in v

    Summing Up All Genus Free Energy of ABJM Matrix Model

    Full text link
    The localization technique allows us to compute the free energy of the U(N)_k x U(N)_{-k} Chern-Simons-matter theory dual to type IIA strings on AdS_4 x CP^3 from weak to strong 't Hooft coupling \lambda = N / k at finite N, as demonstrated by Drukker, Marino, and Putrov. In this note we study further the free energy at large 't Hooft coupling with the aim of testing AdS/CFT at the quantum gravity level and, in particular, sum up all the 1/N corrections, apart from the worldsheet instanton contributions. The all genus partition function takes a remarkably simple form -- the Airy function, Ai (k^{4/3} \lambda_r), with the renormalized 't Hooft coupling \lambda_r.Comment: 18 pages, no figures, v2: typos corrected and references adde

    Mitochondrial Priming by CD28

    No full text
    T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation—cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses

    Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation

    Get PDF
    How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis

    Relative entanglement entropies in 1 + 1-dimensional conformal field theories

    Get PDF
    We study the relative entanglement entropies of one interval between excited states of a 1+1 dimensional conformal field theory (CFT). To compute the relative entropy S(\u3c11\u2016\u3c10) between two given reduced density matrices \u3c11 and \u3c10 of a quantum field theory, we employ the replica trick which relies on the path integral representation of Tr(\u3c11\u3c1n 1210) and define a set of R\'enyi relative entropies Sn(\u3c11\u2016\u3c10). We compute these quantities for integer values of the parameter n and derive via the replica limit, the relative entropy between excited states generated by primary fields of a free massless bosonic field. In particular, we provide the relative entanglement entropy of the state described by the primary operator i 02\u3d5, both with respect to the ground state and to the state generated by chiral vertex operators. These predictions are tested against exact numerical calculations in the XX spin-chain finding perfect agreement. \ua9 2017, The Author(s)
    • …
    corecore