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AbsTRACT
ATP‑sensitive K+ (KATP) channels are oligomeric complexes of pore‑forming Kir6 subunits 

and regulatory Sulfonylurea Receptor (SUR) subunits. SUR, an ATP‑Binding Cassette (ABC) 
transporter, confers Mg‑nucleotide stimulation to the channel via nucleotide interactions 
with its two cytoplasmic domains (Nucleotide Binding Folds 1 and 2; NBF1 and NBF2). 
Regulation of KATP channel expression is a complex process involving subunit assembly 
in the ER, SUR glycosylation in the Golgi, and trafficking to the plasma membrane. 
Dysregulation can occur at different steps of the pathway, as revealed by disease‑causing 
mutations. Here, we have addressed the role of SUR1 NBF1 in gating and expression 
of reconstituted channels. Deletion of NBF1 severely impairs channel expression and 
abolishes MgADP stimulation. Total SUR1 protein levels are decreased, suggestive of 
increased protein degradation, but they are not rescued by treatment with sulfonylureas 
or the proteasomal inhibitor MG‑132. Similar effects of NBF1 deletion are observed in 
recombinant KATP channels obtained by “splitting” SUR1 into two separate polypeptides 
(a N‑terminal “half” and a C‑terminal “half”). Interestingly, the location of the “splitting 
point” in the vicinity of NBF1 has marked effects on the MgADP stimulation of resulting 
channels. Finally, ablation of the ER retention motif upstream of NBF1 (in either “split” 
or full‑length SUR1) does not rescue expression of channels lacking NBF1. These results 
indicate that, in addition to NBF1 being required for MgADP stimulation of the channel, 
it plays an important role in the regulation of channel expression that is independent of 
the ER retention checkpoint and the proteasomal degradation pathway.

INTRoduCTIoN

In	 responding	 to	 changes	 in	 cellular	 [ATP]/[ADP],	 ATP-sensitive	 potassium	 (KATP)	
channels	 link	cellular	metabolism	to	membrane	excitability.	They	are	heterooctamers	of	
two	subunits1-3:	four	pore-forming	Kir6.2	potassium	channel	subunits	plus	four	regula-
tory	 sulfonylurea	 receptor	 (SUR)	 subunits.	 SUR,	 like	 all	 other	 ATP-Binding	 Cassette	
(ABC)	transporters,	contains	two	transmembrane	domains	(TMD1	and	TMD2)	and	two	
cytoplasmic	domains	(Nucleotide	Binding	Folds	1	and	2,	NBF1	and	NBF2);	in	addition,	
it	 possesses	 a	 N-terminal	 transmembrane	 domain	 (TMD0),	 which	 mediates	 SUR-Kir6	
interactions.4,5	While	ATP	inhibits	the	KATP	channel	by	direct	binding	to	the	cytoplasmic	
domains	of	Kir6,6,7	SUR	is	responsible	for	channel	regulation	by	other	ligands,	including	
high-affinity	inhibition	by	sulfonylurea	drugs,8	stimulation	by	potassium	channel	openers	
(KCO’s),9	 and	 stimulation	 by	 Mg-nucleotides.10,11	 Crystallographic	 and	 biochemical	
studies	 on	 prokaryotic	 NBFs12-15	 suggest	 that	 Mg-nucleotide	 binding	 at	 the	 NBFs	 of	
SUR	induces	formation	of	a	NBF1-NBF2	heterodimer,	which	mediates	ATP	hydrolysis.	
Consistent	with	this	model,	mutations	in	the	predicted	binding	sites	of	either	NBF	signifi-
cantly	impair	or	completely	abolish	Mg-nucleotide	stimulation	of	KATP	channels.16,17

KATP	channels	are	assembled	in	the	Endoplasmic	Reticulum	(ER)	from	Kir6	and	SUR	
subunits.	Each	subunit	possesses	an	ER	retention	motif,	RKR,	which	prevents	trafficking	
of	 mismatched	 subunits	 to	 the	 membrane:	 in	 Kir6.2,	 it	 is	 located	 in	 the	 C-terminus,	
whereas	in	SUR1	it	is	located	in	the	cytoplasmic	loop	between	TMD1	and	NBF1	(residues	
648–650).6,18,19	 In	 the	 fully-assembled	KATP	 channel	 complex,	 each	 retention	 signal	 is	
apparently	masked	by	the	other	subunit,	and	the	channel	can	exit	the	ER.19	Ablation	of	
this	motif	by	mutation	to	AAA,	or	by	truncation	of	the	C-terminus	in	the	case	of	Kir6.2,6	
facilitates	 trafficking	 of	 either	 subunit	 alone.	Trafficking	 of	 SUR1	 to	 the	 membrane	 is	
also	dependent	on	N-linked	glycosylation	at	N10	and	N1050.20	Because	of	this	complex	
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glycosylation,	 SUR1	 migrates	 as	 multiple	 molecular	 weight	 species	
on	 electrophoresis	 from	 cell	 lysates:	 the	 lower	 molecular	 weight	
species	corresponds	to	the	immature,	core-glycosylated	ER	fraction,	
and	the	higher	molecular	weight	 species	correspond	to	 the	mature,	
fully-glycosylated	plasma	membrane	fraction.21,22

Dysregulation	 of	 SUR	 assembly	 and	 trafficking	 has	 important	
physiological	 consequences,	 as	 evidenced	 by	 mutations	 that	 cause	
retention	 of	 SUR1	 in	 the	 ER23	 or	 in	 the	 Golgi,24	 leading	 to	
reduced	channel	expression	and	causing	Persistent	Hyperinsulinemic	
Hypoglycemia	 of	 Infancy	 (PHHI)	 in	 humans.	 Some	 mutations	
can	be	fully	or	partially	rescued	by	ablation	of	the	RKR	motif.23,25	
Others	 can	 be	 rescued	 by	 sulfonylurea	 treatment,26	 which	 reduces	
degradation	 of	 the	 mutant	 protein	 via	 the	 ubiquitination-protea-
somal	degradation	pathway.27

In	this	study,	we	have	examined	the	role	of	NBF1	in	the	regulation	
of	KATP	channel	expression	and	gating	by	engineering	recombinant	
channels	 lacking	 NBF1.	 Deletion	 of	 NBF1	 from	 SUR1	 has	 dras-
tically	 deleterious	 effects	 on	 channel	 formation	 and	 on	 channel	
stimulation	by	MgADP.	Total	SUR1	protein	levels	are	decreased	by	
NBF1	deletion,	suggestive	of	increased	protein	degradation,	and	they	
are	not	rescued	by	treatment	with	sulfonylureas	or	the	proteasomal	
inhibitor	 MG-132.	 Deletion	 of	 NBF1	 has	 equivalent	 effects	 when	
KATP	channels	are	generated	by	coexpression	of	Kir6.2	with	“split”	
SUR1	 constructs	 (an	 N-terminal	 fragment	 and	 a	 C-terminal	 frag-
ment4),	demonstrating	 that	 the	 effects	of	NBF1	deletion	are	not	 a	
result	of	the	artificial	connection	of	TMD1	to	TMD2.	Interestingly,	
the	MgADP	stimulation	of	KATP	channels	formed	by	“split”	SUR1	
constructs	 is	 differentially	 impaired	 depending	 on	 the	 location	 of	
the	 “splitting”	 point.	 Finally,	 ablation	 of	 the	 ER	 retention	 motif	
in	 either	 the	 full-length	 or	 the	 “split”	 SUR1	 background	 fails	 to	
rescue	the	expression	deficit	caused	by	deletion	of	NBF1.	Thus,	the	
requirement	for	NBF1	for	channel	expression	is	independent	of	the	
control	of	subunit	association	in	the	ER	and	of	protein	degradation	
by	the	proteasomal	pathway,	and	is	likely	related	to	misfolding	of	the	
SUR1DNBF1	protein.

MATeRIALs ANd MeThods

Transfection of COSm6 cells with cloned cDNA.	 cDNA	 was	
transfected	into	COSm6	cells	using	FuGENE	6	Transfection	Reagent	
(Roche	 Diagnostics,	 Indianapolis,	 IN).	 Typically,	 1.1	 mg	 of	 total	
DNA	(0.3	mg	mouse	Kir6.228	plus	0.5	mg	hamster	SUR129	plus	0.3	
mg	GFP	as	a	marker	for	transfection)	was	mixed	with	3	mL	FuGENE	
6;	cells	were	incubated	in	the	presence	of	the	transfection	mixture	for	
12-24	hrs,	and	then	plated	on	sterile	glass	coverslips	for	growth	prior	
to	patch-clamp	experiments.	All	transfections	were	done	in	parallel.

Split	 SUR1	 constructs	 (FLAG-NSUR1	 and	 His-CSUR1)	 were	
engineered	by	PCR	from	full-length	SUR1	(M1-K1580)	using	epit-
ope-containing	5'	primers	(FLAG:	DYKDDDDK,	His:	HHHHHH).	
FLAG-NSUR1	 constructs	 begin	 at	 M1	 and	 end	 at	 L614,	 N647,	
A674,	 D936,	 A1000,	 or	 S1045;	 His-CSUR1	 constructs	 end	 at	
K1580	and	begin	at	S615,	D675,	Q937,	C1001,	or	P1046.	When	
cotransfected	into	COS	cells,	0.3	mg	DNA	of	each	was	used	in	place	
of	 full-length	 SUR1.	 In	 constructs	 indicated	 as	 [AAA],	 the	 RKR	
motif	(R648-K649-R650)	was	mutated	to	AAA.	DNBF1	constructs,	
lacking	 D675-D936,	 were	 also	 engineered	 by	 two-step	 PCR	 from	
full-length	SUR1.	All	PCR-generated	constructs	were	confirmed	by	
direct	DNA	sequencing.

Electrophysiological methods.	 Inside-out	 membranes	 were	
patch-clamped	 in	 a	 chamber	 mounted	 on	 the	 stage	 of	 an	 inverted	
microscope	 (Nikon,	 Garden	 City,	 NY).	 The	 chamber	 consists	 of	
four	 lanes	 (each	 containing	 different	 solutions)	 that	 run	 into	 the	
same	 end-pool,	 where	 the	 ground	 electrode	 is	 placed.30	 A	 float	
connected	 to	 a	 tension	 transducer	 senses	 the	 solution	 level	 in	 the	
end-pool	and	controls	the	solution	level	by	varying	the	outflow.	COS	
cells	 (2–5	days	 post-transfection)	 that	 fluoresced	 green	 under	 UV	
illumination	 were	 selected	 for	 patch-clamping.	 Membrane	 patches	
were	voltage-clamped	using	a	CV-4	headstage	and	an	Axopatch	1-D	
amplifier,	and	currents	were	digitized	with	a	Digidata	1322A	board	
(all	 from	 Axon	 Instruments,	 Union	 City,	 CA).	 Bath	 and	 pipette	
control	 solutions	 (KINT)	contained,	 in	mM:	150	KCl,	10	HEPES,	
and	1	EGTA	(pH	7.4).	ATP	and	ADP	were	 added	 to	 the	bathing	
solution	as	dipotassium	salts.	Where	indicated,	MgCl2	was	added	to	
the	bathing	solution	to	a	calculated	[Mg2+

free]	of	0.5	mM.
Data	 were	 analyzed	 offline	 with	 the	 pClamp	 8.2	 software	 suite	

(Axon	Instruments,	Union	City,	CA)	and	Microsoft	Excel	(Microsoft	
Corporation,	Redmond,	WA).	Results	are	presented	as	mean	±	SEM	
(standard	error	of	the	mean).	Statistical	tests	and	p-values	are	noted	
in	figure	legends	where	appropriate.

Immunoblotting of COS cell lysates.	Transfected	COS	cells	were	
grown	in	6-well	plates	for	2	days	(transfections	were	done	in	parallel).	
Cells	 were	 washed	 twice	 with	 4°C	 PBS	 (137	 mM	 NaCl,	 2.7	 mM	
KCl,	10	mM	Na2HPO4,	2	mM	KH2PO4)	and	lysed	in	250	mL	lysis	
buffer	(150	mM	NaCl,	20	mM	HEPES,	10	mM	EDTA,	1%	NP-40,	
one	“Complete	Mini”	protease	inhibitor	tablet	[Roche	Diagnostics,	
Indianapolis,	IN]	per	10	mL,	pH	7)	for	30	min	at	4°C	under	mild	
rocking.	 Crude	 lysates	 were	 collected	 by	 pipetting,	 centrifuged	 for	
5	min	at	13,000	rpm	at	4°C	in	a	microcentrifuge,	and	transferred	to	
clean	microcentrifuge	tubes.	Where	indicated,	10	mM	glibenclamide	
was	added	to	the	culture	medium	24	hours	prior	to	lysis,	and	10	mM	
MG-132	was	 added	 to	 the	medium	6	hours	prior	 to	 lysis	 (control	
cells	were	exposed	to	the	vehicle,	1%	DMSO).

Samples	 (6	 mg	 total	 protein/lane)	 were	 resolved	 by	 SDS-PAGE	
(7.5%	acrylamide)	and	electrophoretically	transferred	to	nitrocellulose	
filters	(Hybond-ECL,	Amersham	Biosciences).	Filters	were	blocked	in	
TBS	 buffer	 (200	 mM	 NaCl,	 20	 mM	Tris-HCl,	 pH	 7.4)	 plus	 5%	
nonfat	 dry	 milk	 at	 4°C	 overnight,	 and	 then	 bathed	 in	 a	 1:1000	
dilution	 of	 the	 primary	 antibody	 (mouse	 monoclonal	 anti-FLAG	
antibody,	 Sigma,	 St.	 Louis,	 MO)	 in	 TBS	 plus	 5%	 milk	 at	 room	
temperature	 for	 1	 hr.	 Filters	 were	 washed	 with	TBS	 plus	 5%	 milk	
for	30	min	at	room	temperature,	and	then	bathed	in	a	1:1000	dilu-
tion	of	 the	 secondary	 antibody	 (sheep	 anti-mouse	 IgG,	horseradish	
peroxidase	 linked,	Amersham	Biosciences)	 in	TBS	plus	5%	milk	 at	
room	temperature	for	1	hr.	Filters	were	then	sequentially	washed	with	
TBS	plus	5%	milk,	TBS	plus	0.1%	Tween,	and	TBS,	each	for	30	min	
at	room	temperature.	Finally,	an	enhanced	chemiluminescence	system	
(Supersignal	 West	 Femto	 Maximum	 Sensitivity	 Substrate,	 Pierce	
Biochemicals)	 was	 applied	 to	 the	 filters,	 to	 which	 autoradiography	
film	(Midwest	Scientific,	St.	Louis,	MO)	was	then	exposed.

Macroscopic 86Rb+ efflux assay.	 COS	 cells	 in	 12-well	 plates	
were	 incubated	 for	 24	 hr	 in	 culture	 medium	 containing	 86RbCl	
(1	 mCi/mL)	 2	 days	 post-transfection	 (transfections	 were	 done	 in	
parallel).	 Before	 measurement	 of	 86Rb+	 efflux,	 cells	 were	 washed	
twice	 with	 Ringer’s	 (in	 mM:	 118	 NaCl,	 2.5	 CaCl2,	 1.2	 KH2PO4,	
4.7	 KCl,	 25	 NaHCO3,	 1.2	 MgSO4,	 10	 HEPES;	 pH	 7.4)	 plus	
metabolic	inhibition	(MI,	1	mM	2-deoxy-D-glucose	and	2.5	mg/mL	
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oligomycin).	At	selected	time	points,	the	solution	was	aspirated	from	
the	 cells	 and	 replaced	 with	 fresh	 solution;	 after	 completion	 of	 the	
assay,	cells	were	lysed	with	1%	SDS,	aspirated,	and	radioactivity	was	
assayed	in	a	scintillation	solution.	Raw	data	are	shown	as	86Rb+	efflux	
relative	to	total	counts	(including	all	 time	points	and	the	 lysate	for	
each	construct).

The	rate	constant	of	KATP-specific	86Rb+	efflux	(k2)	was	obtained	
by	fitting	the	data	with	a	single-exponential	equation:

	 Relative	flux	=	1-	exp	[	-	(k1	+	k2)	*	t	]

where	 the	 apparent	 rate	 constant	 for	 nonspecific	 efflux	 (k1)	 was	
obtained	from	untransfected	cells.

ResuLTs

Deletion of NBF1 from SUR1 reduces channel expression and 
abolishes MgADP stimulation.	The	demonstration	that	prokaryotic	
NBFs	form	dimers	upon	nucleotide	binding	has	led	to	the	proposal	

that	 formation	 of	 a	 nucleotide-bound	 SUR	
NBF1-NBF2	heterodimer	underlies	Mg-nucleotide	
stimulation	of	KATP	channels.31	Since	deletion	of	
NBF2	 from	 SUR1	 abolishes	 channel	 stimula-
tion	by	MgADP,32	we	hypothesized	that	deletion	
of	 NBF1	 would	 have	 similar	 functional	 conse-
quences.	We	therefore	deleted	the	NBF1	domain	
(D675-D936)	from	WT	SUR1,	and	coexpressed	
the	resulting	SUR1DNBF1	construct	with	Kir6.2	
in	 COS	 cells	 (Fig.	 1A).	 Strikingly,	 deletion	 of	
NBF1	 inhibited	 channel	 expression	 >	 100-fold	
compared	 to	WT,	 as	 assessed	by	patch-clamping	
excised	 membranes	 in	 the	 inside-out	 configura-
tion	 (Fig.	1B	and	C),	with	KATP	 channels	being	
undetectable	 in	 most	 (77%)	 patches.	 In	 the	 few	
patches	that	contained	enough	channels	to	assess	
their	 functional	 properties,	 MgADP	 stimulation	
was	 indeed	 abolished	 (Fig.	 1B,	 inset),	 consis-
tent	 with	 NBF1	 being	 an	 essential	 domain	 for	
SUR1-dependent	Mg-nucleotide	stimulation.

Interestingly,	 the	 ER	 retention	 signal	 RKR	
is	 only	 25	 residues	 upstream	 from	 the	 site	 of	
NBF1	deletion	 (Fig.	 1C).	We	 thus	hypothesized	
that	 NBF1	 deletion	 alters	 the	 folding	 of	 the	
RKR-containing	 loop	 such	 that	 it	 is	 no	 longer	
obscured	 in	 the	 fully	 assembled	 KATP	 channel	
complex,	leading	to	channel	retention	in	the	ER.	
We	 therefore	 mutated	 the	 RKR	 motif	 to	 AAA,	
a	 manipulation	 that	 bypasses	 the	 ER	 retention	
checkpoint	and	allows	plasma	membrane	expres-
sion	of	unassociated	subunits.19	Mutation	to	AAA	
did	increase	the	percentage	of	patches	containing	
KATP	 channels	 (62%	vs.	23%,	Fig.	1C),	but	 the	
mean	 channel	 density	 was	 not	 increased	 signifi-
cantly	(7	±	3	vs.	2	±	1	pA).	As	expected,	MgADP	
stimulation	was	also	abolished	in	channels	formed	
by	 SUR1DNBF1[AAA]	 (Fig.	 1B,	 inset).	 The	
lack	 of	 a	 convincing	 rescue	 of	DNBF1	 by	 AAA	
indicates	 that	 the	 defect	 of	 DNBF1-containing	

channels	is	not	merely	an	inability	to	exit	the	ER	due	to	exposure	of	
the	RKR	domain	or	due	to	mismatched	channel	subunits.

Deletion of NBF1 decreases total SUR1 protein levels.	The	above	
results	suggest	that	SUR1	protein	levels	may	be	lowered	by	deletion	
of	NBF1.	To	 test	 this	possibility,	COS	cell	 lysates	were	 immunob-
lotted	 with	 anti-FLAG	 (all	 constructs	 discussed	 are	 N-terminally	
tagged	with	FLAG).	SUR1	is	detected	as	a	~150–170	kDa	doublet,	
corresponding	 to	 the	 immature,	 core-glycosylated	 ER	 fraction	 and	
the	mature,	fully-glycosylated	plasma	membrane	fraction	(Fig.	2A).22	
SUR1[AAA]	exhibits	the	same	pattern,	although	the	ratio	of	the	two	
bands	is	shifted	such	that	the	mature	band	is	now	more	prominent	
than	the	 immature	band	and	hence	 the	 fraction	of	 total	protein	 in	
the	plasma	membrane	 is	predicted	 to	be	 increased,	 consistent	with	
previous	studies.19	Interestingly,	SUR1DNBF1	is	detected	as	a	very	
faint	~120	kDa	single	band	(Fig.	2A).	This	single	band	likely	corre-
sponds	to	the	immature	(non-plasma	membrane)	fraction,	consistent	
with	the	low	channel	activity	detected	by	patch-clamping.

Multiple	PHHI	mutations	 are	known	 to	cause	 reduced	channel	
expression;	specifically,	some	mutations	lead	to	increased	degradation	

Figure 1. Deletion of NBF1 from SUR1 prevents KATP channel expression and abolishes MgADP 
stimulation. (A) Transmembrane topology of SUR1, with relevant residues labeled. TMD, trans‑
membrane domain. NBF, nucleotide binding fold. (B) Representative current traces recorded 
at ‑50 mV from inside‑out excised membrane patches from COS cells transfected with Kir6.2 
and either SUR1, SUR1DNBF1, or SUR1DNBF1[AAA]. All transfections were done in parallel. 
Patches were exposed to varying concentrations of ATP and ADP, as indicated, in the presence 
of 0.5 mM free Mg2+. Inset: magnified current traces for SUR1DNBF1 and SUR1DNBF1[AAA] 
(note different scale bars for current). (C) Left, schematic representation of SUR1 constructs, with 
or without NBF1. The length of the TMD1‑NBF1 linker (containing the ER retention motif RKR, 
intact or mutated to AAA) is exaggerated for clarity. Middle, KATP channel current per patch. Bars 
indicate mean ± SEM of n = 8–13 patches. *, p < 0.01 as compared to WT by Student’s paired 
t test. Right, percentage of patches with KATP channels.
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of	 SUR1	 and	 thus	 decreased	 total	 SUR1	 protein	 levels.26	 It	 is	
	therefore	possible	that	the	decrease	in	SUR1	protein	levels	caused	by	
deletion	 of	 NBF1	 also	 results	 from	 increased	 protein	 degradation.	
We	therefore	incubated	COS	cells	with	sulfonylureas	and	the	protea-
somal	 inhibitor	MG-132,	both	of	which	 increase	SUR1	expression	
by	 preventing	 protein	 degradation,	 and	 are	 capable	 of	 rescuing	
expression	of	such	PHHI	mutants.27	However,	neither	sulfonylurea	
nor	MG-132	treatment	significantly	increased	SUR1DNBF1	protein	
levels	(Fig.	2B).

Deletion of NBF1 has similar effects on the expression of 
 channels generated by “split” SUR1 constructs.	A	potential	problem	
resulting	 from	 deletion	 of	 NBF1	 (which	 does	 not	 apply	 to	 dele-
tion	of	NBF2,	which	is	at	the	C-terminus	of	SUR1)	is	that	directly	
linking	TMD1	 to	TMD2	 may	 place	 structural	 constraints	 on	 the	
resulting	SUR1	protein	and	lead	to	improper	folding.	To	circumvent	
this	 caveat,	 we	 took	 advantage	 of	 the	 fact	 that	 KATP	 channels	 can	
be	 reconstituted	 by	 coexpression	 of	 Kir6.2	 with	 two	 truncated	 or	
“split”	 SUR1	 constructs,	 one	 containing	 the	 N-terminal	 “half ”	 of	
the	molecule	(residues	M1	to	S1045,	referred	to	as	N-1045),	and	the	
other	containing	 the	C-terminal	“half ”	 (residues	P1046	 to	K1580,	
referred	to	as	1046-C).4

No	channel	activity	was	detected,	either	by	patch-clamp	in	excised	
membranes	 or	 by	 Rb-flux	 assay	 in	 metabolically	 inhibited	 intact	
cells,	 when	 either	 N-1045	 alone	 or	 1046-C	 alone	 was	 coexpressed	
with	Kir6.2	(Fig.	3A	and	C).	However,	coexpression	of	both	N-1045	
and	1046-C	with	Kir6.2	(indicated	as	N-1045/1046-C)	resulted	in	
formation	of	WT-like	KATP	channels	 that	were	 active	 in	 the	 intact	
cell,	 inhibited	by	ATP,	 and	 stimulated	by	Mg-nucleotides	 (Fig.	 3).	
The	 current	 density	 per	 patch	 was	 comparable	 to	 WT	 (Fig.	 3C),	
indicating	 that	 “splitting”	 alone	 does	 not	 impair	 channel	 forma-
tion.	Consistent	with	 the	 results	obtained	 for	SUR1DNBF1,	when	
N-1045	was	C-terminally	 truncated	 in	order	 to	 remove	NBF1,	no	
KATP	channel	activity	was	detected	in	excised	membranes	or	in	intact	
cells	(Fig.	3A	and	C).	Thus,	even	in	the	“split”	SUR1	background,	
deletion	of	NBF1	impairs	channel	expression.

However,	 because	 the	 “splitting”	 point	 in	 the	 N-1045/1046-C	
pair	is	located	in	the	extracellular	loop	between	the	first	and	second	

a-helices	of	TMD2,	the	“split”	pair	lacking	NBF1	(N-675/1046-C)	
is	 also	 lacking	 the	 first	 a-helix	 of	 TMD2	 (Fig.	 3C),	 which	 may	
in	 itself	 be	 deleterious	 for	 channel	 assembly	 and	 expression.	 We	
therefore	 generated	 another	 “split”	 pair,	 N-936/937-C,	 which	 is	
“split”	immediately	after	NBF1	(Fig.	3C).	Neither	N-936	alone	nor	
937-C	alone	generated	KATP	channels	when	coexpressed	with	Kir6.2	
(Fig.	3A	 and	 C),	 but	 again,	 coexpression	 of	 both	 constructs	 with	
Kir6.2	 (N-936/937-C)	 resulted	 in	 WT-like	 KATP	 channel	 currents	
in	 excised	patches.	 In	 this	background,	deletion	of	NBF1	 (N-675/
937-C)	 abolished	 KATP	 channel	 expression	 in	 excised	 patches,	
indicating	that	the	expression	deficit	is	due	to	the	absence	of	NBF1	
rather	than	the	first	a-helix	of	TMD2.	However,	MgADP	stimula-
tion	was	abolished	in	N-936/937-C	channels,	resulting	in	no	channel	
activity	 in	 metabolically	 inhibited	 intact	 cells	 (Fig.	 3B	 and	 C),	 as	
activity	in	the	intact	cell	is	dependent	on	Mg-nucleotide	interactions	
with	the	SUR	NBFs.11,17

Varying the “splitting” point in the vicinity of NBF1 differentially 
hinders MgADP stimulation.	Since	N-936/937-C	channels	exhib-
ited	 no	 MgADP	 stimulation,	 whereas	 N-1045/1046-C	 channels	
were	MgADP-stimulated,	we	hypothesized	that	decreased	tethering	
of	 NBF1	 to	 the	 membrane	 (via	 linkers	 to	 TMD1	 and	 TMD2)	
impairs	its	ability	to	dimerize	with	NBF2	and	stimulate	the	channel.	
We	 therefore	 generated	 three	 additional	 “split”	 SUR1	 pairs	 with	
different	“splitting”	points	in	the	vicinity	of	SUR1,	and	assessed	the	
MgADP	 stimulation	 of	 the	 resulting	 channels.	 Splitting	 immedi-
ately	after	TMD1	(such	that	the	TMD1-NBF1	linker	is	attached	to	
NBF1)	abolished	MgADP	stimulation,	while	 splitting	 immediately	
before	 NBF1	 (such	 that	 the	 TMD1-NBF1	 linker	 is	 attached	 to	
TMD1)	resulted	in	channels	that	were	expressed	at	similar	density	to	
full-length	SUR1-containing	channels,	and	that	were	stimulated	by	
MgADP	(Fig.	4A	and	B).	None	of	these	constructs	generated	func-
tional	channels	without	the	relevant	partner	‘half ’	(Fig.	3,	and	data	
not	shown).	Interestingly,	splitting	immediately	before	TMD2	(such	
that	the	NBF1-TMD2	linker	is	attached	to	NBF2)	also	resulted	in	
channels	 that	 were	 stimulated	 by	 MgADP.	 These	 results	 indicate	
that	NBF1	need	not	necessarily	be	attached	to	both	TMDs	in	order	
for	MgADP	stimulation	to	be	preserved.	Rather,	 they	 indicate	that	

Figure 2. Deletion of NBF1 from SUR1 decreases total SUR1 protein levels. (A) Anti‑FLAG Western blot of lysates from COS cells transfected with Kir6.2 and 
either SUR1, SUR1[AAA], or SUR1DNBF1 (all SUR1 constructs are N‑terminally FLAG‑tagged; all transfections were done in parallel). Untransfected control 
is also shown. Six micrograms total protein per lane was loaded for each sample. Results are representative of n = 5 experiments. (B) Anti‑FLAG Western 
blot of lysates from COS cells transfected with Kir6.2 and either SUR1 (left) or SUR1DNBF1 (right), under either control conditions, incubation with 10 mM 
glibenclamide for 24 hrs prior to lysis, or incubation with 10 mM MG‑132 for 6 hrs prior to lysis. Results are representative of n = 4 experiments.
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some	areas	in	the	vicinity	of	NBF1	are	more	sensitive	to	disruption	
by	“splitting”.

Ablation of the RKR motif does not rescue the effects of NBF1 
deletion in the “split” SUR1 background.	 Given	 the	 similarity	 of	
effects	of	deletion	of	NBF1	in	the	split	SUR1	background	to	those	in	
the	full-length	SUR1	background,	we	made	further	“split”	constructs	
to	test	whether	these	effects	are	also	independent	of	the	ER	retention	
motif	RKR.	In	the	“split”	SUR1	background	(N-674/675-C),	abla-
tion	of	the	RKR	motif	by	either	deletion	(N-647/675-C)	or	mutation	
to	 AAA	 (N-674[AAA]/675-C)	 enhanced	 KATP	 channel	 expression	
without	 altering	 MgADP	 stimulation	 (Fig.	 5A).	 However,	 neither	
manipulation	was	capable	of	rescuing	expression	of	the	“split”	SUR1	
lacking	 NBF1	 (N-647/937-C	 and	 N-674[AAA]/937-C).	 A	 few	
KATP	channels	were,	however,	detected	in	some	N-674[AAA]/937-C	
patches	(33%	of	patches	vs.	0%	patches	for	either	N-647/937-C	or	

N-674/937-C,	 Fig.	 5B),	 which	 allowed	
confirmation	 that	 deletion	 of	 NBF1	 leads	
to	 loss	 of	 MgADP	 stimulation	 in	 the	
“split”	 background	 as	 in	 the	 full-length	
background	(Fig.	5C).	Thus,	the	effects	of	
deletion	 of	 NBF1	 in	 either	 the	 “split”	 or	
full-length	SUR1	background	are	not	due	
to	an	inability	of	the	channel	to	circumvent	
the	ER	retention	checkpoint.

dIsCussIoN
NBF1 is necessary for MgADP 

 stimulation of KATP channels.	Our	results	
indicate	that	SUR1	NBF1	is	necessary	for	
both	 Mg-nucleotide	 stimulation	 of	 KATP	
channels	 and	 for	 channel	 expression.	The	
former	result	is	not	unexpected,	as	studies	on	
prokaryotic	ABC	transporters	have	demon-
strated	that	NBFs	form	ATP-bound	dimers	
which	 subsequently	 hydrolyze	 ATP	 and	
power	 ABC	 transporter	 function.12-15	 In	
SUR,	there	are	several	lines	of	evidence	for	
formation	 of	 a	 NBF1-NBF2	 heterodimer	
that	 underlies	 Mg-nucleotide	 stimulation	
of	 KATP	 channels:	 homology	 modeling	
and	 mutagenesis,31	 cooperativity	 of	
azido-nucleotide	 labeling,33	 single-particle	
electron	microscopy,34	co-affinity	purifica-
tion	 of	 isolated	 NBFs,35	 and	 interactions	
between	 a	 soluble	 NBF1	 construct	 and	 a	
TMD2-NBF2	construct	 in	the	membrane	
of	insect	cells.36	Since	the	predicted	nucleo-
tide-binding	sites	are	at	the	dimer	interface	
and	formed	by	sequence	elements	from	both	
NBFs,	 deletion	 of	 either	 NBF	 would	 be	
expected	 to	 impair	 nucleotide	 stimulation	
of	the	channel.	This	has	been	demonstrated	
for	 deletion	 of	 NBF2,	 which	 abolishes	
MgADP	 stimulation	 of	 KATP	 channels	 in	
excised	 membranes,	 as	 well	 as	 metabolic	
inhibition-induced	 channel	 activity	 in	 the	
intact	cell.32	We	demonstrate	here	that	the	
same	 functional	 consequences	 result	 from	

deletion	of	NBF1.
NBF1 is also required for KATP channel expression.	Our	results	

also	 show	 that	 deletion	 of	 NBF1	 severely	 impairs	 channel	 expres-
sion	 levels.	 This	 is	 true	 in	 the	 full-length	 SUR1	 background	 as	
well	as	in	the	“split”	SUR1	background,	which	addresses	the	caveat	
of	 misfolding	 due	 to	 artificially	 linking	 TMD1	 and	 TMD2.	 The	
expression	deficit	is	not	significantly	rescued	by	ablation	of	the	ER	
retention	motif	RKR,	although	the	mean	current	per	patch	and	the	
percentage	 of	 patches	 with	 current	 are	 slightly	 increased,	 indica-
tive	 of	 a	 minor	 effect.	 Since	 total	 protein	 levels	 are	 decreased,	 as	
detected	by	immunoblotting,	we	hypothesize	that	the	SUR1DNBF1	
construct	 is	 less	 stable	 than	 WT	 and	 thus	 increasingly	 targeted	
for	 degradation,	 such	 that	 there	 is	 reduced	 functional	 channels	
at	 the	 surface	 membrane,	 although	 we	 cannot	 formally	 exclude	
the	 possibility	 that	 surface	 protein	 levels	 are	 normal,	 yet	 channel	

Figure 3. Reconstitution of KATP channels from “split” SUR1 constructs. (A) Relative 86Rb+ efflux as a 
 function of time, in the presence of metabolic inhibition, from COS cells transfected with Kir6.2 and either 
WT SUR1, N‑1045, 1046‑C, N‑1045/1046‑C, or N‑674/1046‑C. Untransfected control is also shown. 
Data points indicate mean ± SEM of n = 4–12 experiments. Data were fitted with a single‑exponential 
function to obtain rate constants for KATP‑specific efflux, k2 (see Methods). (B) Representative current 
traces recorded at ‑50 mV from inside‑out excised membrane patches from COS cells transfected with 
Kir6.2 and either N‑1045/1046‑C or N‑936/937‑C. Patches were exposed to varying concentrations 
of ATP and ADP, as indicated, in the presence of 0.5 mM free Mg2+. (C) Left, schematic representation 
of “split” SUR1 constructs, with or without NBF1. Middle, k2 values obtained from Rb‑fluxes in intact 
cells. Bars indicate mean ± SEM of n = 4‑12 experiments. *:p < 0.01 as compared to WT by Student’s 
paired t‑test. Right, KATP channel current per patch. Bars indicate mean ± SEM of n = 7–23 patches. *, 
p < 0.01 as compared to WT by Student’s paired t test.
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activity	 is	 absent.	 The	 ubiquitination-proteasomal	 pathway	 of	
degradation	may	be	 involved:	 this	 is	 the	mechanism	that	underlies	
the	 effects	 of	 the	PHHI	mutants	A116P	 and	V187D.26	However,	
the	 proteasomal	 inhibitor	 MG-132	 failed	 to	 rescue	 total	 DNBF1	
protein	 levels,	 and	 incubation	 with	 sulfonylureas,	 which	 facilitates	
SUR1	folding	and	prevents	its	degradation,	was	also	without	effect.	
We	 therefore	 suggest	 that	 deletion	of	NBF1	 leads	 to	misfolded	or	
unstable	protein	that	is	not	rescued	by	sulfonylurea	binding	and	is	
nonspecifically	degraded.	Indeed,	it	has	been	proposed	that	rescue	of	
SUR1	 trafficking-deficient	mutants	by	SUs	or	proteasomal	 inhibi-
tors	is	only	possible	in	the	case	of	moderate	folding	defects:	severely	
misfolded	 constructs,	 such	 as	 the	 PHHI	 mutation	 DF1388,	 may	
instead	accumulate	in	inclusion	bodies	or	be	degraded	through	other	
pathways.27	Such	may	be	the	case	for	the	DNBF1	constructs	as	well.	
An	alternative	possibility	is	that	there	are	critical,	thus	far	undefined,	
anterograde	trafficking	signals	within	NBF1.

Deletion	of	NBF1	 from	full-length	SUR1	by	covalently	 linking	
TMD1	 and	 TMD2	 may	 potentially	 lead	 to	 misfolding	 of	 the	
resulting	 protein	 due	 to	 the	 imposition	 of	 artificial	 structural	

constraints.	 This	 important	 caveat	 is	 circumvented	 by	 use	 of	 the	
“split”	SUR1	approach.	The	two	“split”	SUR1	constructs	that	consti-
tute	the	DNBF1	pair,	N-674	and	937-C,	are	capable	of	forming	fully	
functional	KATP	channels	when	coexpressed	with	the	corresponding	
NBF1-containing	“split”	construct	(N-674	with	675-C,	and	N-936	
with	 937-C),	 demonstrating	 that	 neither	 construct	 is	 inherently	
incapable	 of	 forming	 channels	 due	 to	 improper	 folding.	 Rather,	 it	
is	 the	 absence	 of	 NBF1	 that	 is	 critical.	 Although	 it	 is	 conceivable	
that	 the	 N-674	 and	 937-C	 constructs	 are	 unable	 to	 interact	 with	
each	other	and	thus	form	functional	channels,	the	fact	that	all	pairs	
of	“split”	SUR1	constructs	tested	were	capable	of	forming	channels	
at	 levels	comparable	to	WT	suggests	that	this	 is	unlikely.	The	tight	
packing	between	transmembrane	domains	observed	by	single-particle	
electron	 microscopy	 in	 the	 KATP	 channel	 complex34	 and	 by	 X-ray	
crystallography	 in	 full-length	 prokaryotic	 ABC	 transporters13,37	
suggests	that	TMD1-TMD2	interactions	are	 largely	responsible	for	
coassembly	of	“split”	SUR1	pairs	into	functional	channels.

Interestingly,	 although	 both	 NBF1	 and	 NBF2	 are	 required	 for	
MgADP	stimulation	of	the	channel,	deletion	of	NBF2	does	not	affect	

Figure 4. “Splitting” SUR1 at different locations alters MgADP stimulation of the resulting KATP channels. (A) Representative current traces recorded at ‑50 mV 
from inside‑out excised membrane patches from COS cells transfected with Kir6.2 and either N‑614/615‑C, N‑674/675‑C, or N‑1000/1001‑C. Patches 
were exposed to varying concentrations of ATP and ADP, as indicated, in the presence of 0.5 mM free Mg2+. (B) Left, schematic representation of “split” 
SUR1 constructs. Middle, KATP channel current per patch. Right, Current in Mg‑nucleotides relative to control (no nucleotides (Irel)). Bars indicate mean ± SEM 
of n = 7–20 patches. *, p < 0.05 as compared to WT by Student’s paired t test.
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channel	 expression.32	 There	 are,	 however,	 many	 PHHI	 mutations	
located	in	NBF2	that	result	in	decreased	channel	expression23-25,44-46	
indicating	that	preservation	of	NBF2	structure	is	also	important	for	
expression.	In	fact,	far	more	PHHI	mutations	that	decrease	expres-
sion	have	been	identified	in	NBF2	than	in	NBF1,	suggesting	that	the	
role	of	NBF1	in	channel	expression	is	less	susceptible	to	disruption	
by	point	mutations,	while	that	of	NBF2	is	susceptible	to	point	muta-
tions	but	not	domain	deletion.	To	further	understand	the	differences	
between	 NBFs	 in	 the	 regulation	 of	 channel	 expression,	 it	 would	
be	 interesting	 to	 assess	 the	 effects	 of	 mutations	 in	 NBF1	 that	 are	
equivalent	to	PHHI-causing	NBF2	mutations.	Despite	their	overall	
sequence	similarity	and	proposed	dimeric	function,	important	differ-
ences	between	NBF1	and	NBF2	have	already	been	documented	with	
respect	to	azido-nucleotide	labeling,38,39	functional	consequences	of	
equivalent	mutations,17	and	ability	to	hydrolyze	ATP	when	expressed	
as	 separate	 constructs.40	Thus,	 the	 involvement	 of	 NBF1,	 but	 not	
NBF2,	in	the	regulation	of	SUR1	expression	is	an	additional	element	
of	asymmetry	between	NBF1	and	NBF2.

Interestingly,	replacing	NBF1	of	SUR1	with	that	of	MRP1	only	
suppresses	surface	expression	of	Kir6.2	by	~50%	in	Xenopus oocytes,	

and	 replacing	 NBF2	 actually	 increases	 expression.47	 Conversely,	
replacing	 TMD0,	 TMD1,	 or	 TMD2	 of	 SUR1	 with	 the	 corre-
sponding	 MRP1	 domains	 leads	 to	 no	 expression.47	 These	 results	
highlight	 the	 relative	 structural	 conservation	 of	 NBFs,	 compared	
to	TMDs,	 across	ABC	 transporters:	MRP1	NBFs	 are	 able	 to	 suffi-
ciently	 mimic	 SUR1	 NBFs	 (as	 determinants	 of	 channel	 trafficking	
and	expression)	such	that	moderate	or	no	impairment	of	expression	
results	when	they	are	replaced,	whereas	replacement	of	either	one	of	
the	TMDs	is	prohibitive.

In	insect	cells,	deletion	of	NBF1	abolishes	the	ability	of	SUR1	to	
bind	sulfonylureas.41	It	is	unlikely	that	this	results	from	an	inability	
to	 reach	 the	 plasma	 membrane,	 since,	 unlike	 in	 other	 expression	
systems,	 SUR1	 alone	 or	 Kir6.2	 alone	 can	 traffic	 to	 the	 membrane	
of	 insect	 cells,42	 and	 robust	 sulfonylurea	 binding	 can	 be	 detected	
to	 expressed	 truncated	 SUR1	 constructs36,41	 that,	 on	 their	 own,	
should	not	be	capable	of	channel	formation.	Thus,	the	lack	of	sulfo-
nylurea	binding	due	to	deletion	of	NBF1	may	reflect	misfolding	of	
SUR1DNBF1,	which	would	be	consistent	with	our	results.

MgADP stimulation of “split” channels is dependent on the 
location of the “splitting” point.	Reconstitution	of	KATP	channels	at	

Figure 5. Deletion of NBF1 reduces channel expression and abolishes MgADP stimulation of channels formed by “split” SUR1 constructs. (A) Left, schematic 
representation of “split” SUR1 constructs, with or without NBF1. The length of the TMD1‑NBF1 linker (containing the ER retention motif RKR, intact or mutated 
to AAA) is exaggerated for clarity. Middle, KATP channel current per patch. Bars indicate mean ± SEM of n = 6–16 patches. *, p < 0.01 as compared 
to WT by Student’s paired t‑test. Right: Current in Mg‑nucleotides relative to control (no nucleotides (Irel)). Bars indicate mean ± SEM of n = 7–15 patches. 
(B) Percentage of patches with KATP channels. (C) Representative current trace recorded at ‑50 mV from inside‑out excised membrane patches from COS 
cells transfected with Kir6.2 and N‑674[AAA]/937‑C. Patches were exposed to varying concentrations of ATP and ADP, as indicated, in the presence of 
0.5 mM free Mg2+.
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normal	density,	from	multiple	“split”	SUR1	pairs	demonstrates	that	
the	two	NBFs	do	not	need	to	be	coexpressed	on	the	same	protein.	
Because	the	expression	levels	are	similar	to	wild	type,	it	is	reasonable	
to	assume	that	such	split	pairs	are	processed	and	higher	order	glyco-
sylated	normally.	However,	these	experiments	reveal	that	the	location	
of	the	“splitting”	point	is	critical	in	determining	the	extent	to	which	
resulting	channels	are	stimulated	by	MgADP.	The	pattern	of	stimula-
tion	of	 the	 five	“split”	SUR1	pairs	does	not	correlate	well	with	the	
extent	 of	 tethering	 of	 NBF1	 to	 the	 membrane	 (Fig.	 6).	 Rather,	 it	
indicates	that	some	regions	in	the	vicinity	of	NBF1	are	more	sensitive	
to	“splitting”	than	others.	That	stimulation	is	unchanged	when	the	
NBF1-TMD2	linker	is	severed	immediately	before	TMD2	demon-
strates	that	NBF1	need	not	be	linked	to	TMD2	in	order	for	MgADP	
stimulation	to	be	fully	preserved,	consistent	with	the	modular	nature	
of	eukaryotic	ABC	transporters.

In	 CFTR,	 expression	 of	 functional	 channels	 is	 unaltered	 by	
	“splitting”	 either	 before	 or	 after	 NBF1,43	 as	 is	 the	 case	 with	 our	
“split”	 SUR1	 constructs.	 Furthermore,	 “splitting”	 CFTR	 before	
NBF1	has	no	significant	effects	on	ligand-dependent	channel	gating,	
but	“splitting”	after	NBF1	decreases	open	probability	by	increasing	
the	 rate	 of	 closing.43	 This	 pattern	 is	 similar	 to	 that	 observed	
in	 our	 experiments	 with	 SUR1,	 where	 “splitting”	 before	 NBF1	
preserves	 nucleotide-dependent	 stimulation	 while	 “splitting”	 after	
NBF1	 abolishes	 stimulation.	 Thus,	 the	 loop	 between	 NBF1	 and	

TMD2	may	be	critical	for	normal	NBF1-nucleotide	interactions	in	
eukaryotic	ABC	transporters,	or	it	may	be	important	for	positioning	
NBF1	with	respect	to	NBF2,	thus	facilitating	NBF1-NBF2	heterodi-
merization.	Alternatively,	this	loop	may	contain	thus	far	undetected	
structural	elements	 that,	 in	SUR1,	are	 required	 for	 transduction	of	
Mg-nucleotide	binding	or	hydrolysis	at	the	NBFs	to	the	TMDs	and	
ultimately	 to	 the	Kir6.2	pore.	 Interestingly,	 in	 the	 crystal	 structure	
of	a	full-length	prokaryotic	ABC	transporter,	the	cytoplasmic	loops	
connecting	a-helices	from	the	TMDs	form	defined	secondary	struc-
ture	elements	that	may	mediate	TMD-NBF	interactions.37	Further	
work	 is	 necessary	 to	 elucidate	 the	 detailed	 mechanism	 by	 which	
MgADP	stimulation	is	impaired	in	“split”	SUR1	constructs,	but	our	
results	highlight	the	critical	functional	importance	of	the	cytoplasmic	
linkers	connecting	NBF1	to	TMD1	and	TMD2.
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