2,273 research outputs found

    CMB temperature anisotropy at large scales induced by a causal primordial magnetic field

    Full text link
    We present an analytical derivation of the Sachs Wolfe effect sourced by a primordial magnetic field. In order to consistently specify the initial conditions, we assume that the magnetic field is generated by a causal process, namely a first order phase transition in the early universe. As for the topological defects case, we apply the general relativistic junction conditions to match the perturbation variables before and after the phase transition which generates the magnetic field, in such a way that the total energy momentum tensor is conserved across the transition and Einstein's equations are satisfied. We further solve the evolution equations for the metric and fluid perturbations at large scales analytically including neutrinos, and derive the magnetic Sachs Wolfe effect. We find that the relevant contribution to the magnetic Sachs Wolfe effect comes from the metric perturbations at next-to-leading order in the large scale limit. The leading order term is in fact strongly suppressed due to the presence of free-streaming neutrinos. We derive the neutrino compensation effect dynamically and confirm that the magnetic Sachs Wolfe spectrum from a causal magnetic field behaves as l(l+1)C_l^B \propto l^2 as found in the latest numerical analyses.Comment: 31 pages, 2 figures, minor changes, matches published versio

    Magnetic fields from inflation: the transition to the radiation era

    Full text link
    We compute the contribution to the scalar metric perturbations from large-scale magnetic fields which are generated during inflation. We show that apart from the usual passive and compensated modes, the magnetic fields also contribute to the constant mode from inflation. This is different from the causal (post inflationary) generation of magnetic fields where such a mode is absent and it might lead to significant, non-Gaussian CMB anisotropies.Comment: 19 pages, no figures. v2: Substantially revised version with different conclusions. v3: one reference added, matches version accepted for publication in PR

    Gravitational wave production: A strong constraint on primordial magnetic fields

    Get PDF
    We compute the gravity waves induced by anisotropic stresses of stochastic primordial magnetic fields. The nucleosynthesis bound on gravity waves is then used to derive a limit on the magnetic field amplitude as function of the spectral index. The obtained limits are extraordinarily strong: If the primordial magnetic field is produced by a causal process, leading to a spectral index n2n\ge 2 on super horizon scales, galactic magnetic fields produced at the electroweak phase transition or earlier have to be weaker than B_\la \le 10^{-27}Gauss! If they are induced during an inflationary phase (reheating temperature T1015T\sim 10^{15}GeV) with a spectral index n0n\sim 0, the magnetic field has to be weaker than B_\la \le 10^{-39}Gauss! Only very red magnetic field spectra, n3n\sim -3 are not strongly constrained. We also find that a considerable amount of the magnetic field energy is converted into gravity waves. The gravity wave limit derived in this work rules out most of the proposed processes for primordial seeds for the large scale coherent magnetic fields observed in galaxies and clusters

    Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach

    Full text link
    Gravitational wave production from bubble collisions was calculated in the early nineties using numerical simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the gravitational wave equation. We provide analytical formulae for the peak frequency and the shape of the spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not work in the envelope approximation. This paper focuses on a particular source of gravitational waves from phase transitions. In a companion article, we will add together the different sources of gravitational wave signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects for probing the electroweak phase transition at LISA.Comment: 48 pages, 14 figures. v2 (PRD version): calculation refined; plots redone starting from Fig. 4. Factor 2 in GW energy spectrum corrected. Main conclusions unchanged. v3: Note added at the end of paper to comment on the new results of 0901.166

    Theory of unitarity bounds and low energy form factors

    Full text link
    We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarity. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can beincluded in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K_l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version accepted by EPJA in Tools section; sentences and figures improve

    Gravitational Waves from Warped Spacetime

    Get PDF
    We argue that the RSI model can provide a strong signature in gravitational waves. This signal is a relic stochastic background generated during the cosmological phase transition from an AdS-Schwarschild phase to the RS1 geometry that should occur at a temperature in the TeV range. We estimate the amplitude of the signal in terms of the parameters of the potential stabilizing the radion and show that over much of the parameter region in which the phase transition completes, a signal should be detectable at the planned space interferometer, LISA.Comment: 18 pages, 15 figures; v2: discussion improved, in particular on the justification of the thick wall approximation. 6 figures added. 4 pi factor corrected in perturbativity bound. N-dependence displayed. Conclusions unchanged. JHEP versio

    Detection of gravitational waves from the QCD phase transition with pulsar timing arrays

    Full text link
    If the cosmological QCD phase transition is strongly first order and lasts sufficiently long, it generates a background of gravitational waves which may be detected via pulsar timing experiments. We estimate the amplitude and the spectral shape of such a background and we discuss its detectability prospects.Comment: 7 pages, 5 figs. Version accepted by PR

    Ultrafast entropy production in pump-probe experiments

    Full text link
    The ultrafast control of materials has opened the possibility to investigate non-equilibrium states of matter with striking properties, such as transient superconductivity and ferroelectricity, ultrafast magnetization and demagnetization, as well as Floquet engineering. The characterization of the ultrafast thermodynamic properties within the material is key for their control and design. Here, we develop the ultrafast stochastic thermodynamics for laser-excited phonons. We calculate the entropy production and heat absorbed from experimental data for single phonon modes of driven materials from time-resolved X-ray scattering experiments where the crystal is excited by a laser pulse. The spectral entropy production is calculated for SrTiO3_3 and KTaO3_3 for different temperatures and reveals a striking relation with the power spectrum of the displacement-displacement correlation function by inducing a broad peak beside the eigenmode-resonance.Comment: 11 pages, 6 figure

    Integration of capillary and EWOD technologies for autonomous and low-power consumption micro-analytical systems

    Get PDF
    This work presents a miniaturized system combining, on the same microfluidic chip, capillarity and electrowetting-on-dielectric (EWOD) techniques for movement and control of fluids. The change in hydrophobicity occurring at the edge between a capillary channel and a hydrophobic layer is successfully exploited as a stop-and-go valve, whose operation is electronically controlled through the EWOD electrodes. Taking into account the variety of microfluidic operation resulting from the combination of the two handling techniques and their characteristic features, this work prompts the development of autonomous, compact and low-power consumption lab-on-chip systems
    corecore