12 research outputs found
Adaptive Compliance Shaping with Human Impedance Estimation
Human impedance parameters play an integral role in the dynamics of strength
amplification exoskeletons. Many methods are used to estimate the stiffness of
human muscles, but few are used to improve the performance of strength
amplification controllers for these devices. We propose a compliance shaping
amplification controller incorporating an accurate online human stiffness
estimation from surface electromyography (sEMG) sensors and stretch sensors
connected to the forearm and upper arm of the human. These sensor values along
with exoskeleton position and velocity are used to train a random forest
regression model that accurately predicts a person's stiffness despite varying
movement, relaxation, and muscle co-contraction. Our model's accuracy is
verified using experimental test data and the model is implemented into the
compliance shaping controller. Ultimately we show that the online estimation of
stiffness can improve the bandwidth and amplification of the controller while
remaining robustly stable.Comment: 8 pages, 9 figures, Accepted for publication at the 2020 American
Control Conference. Copyright IEEE 202
The role of hole transport between dyes in solid-state dye-sensitized solar cells
In dye-sensitized solar cells (DSSCs)
photogenerated positive charges
are normally considered to be carried away from the dyes by a separate
phase of hole-transporting material (HTM). We show that there can
also be significant transport within the dye monolayer itself before
the hole reaches the HTM. We quantify the fraction of dye regeneration
in solid-state DSSCs that can be attributed to this process. By using
cyclic voltammetry and transient anisotropy spectroscopy, we demonstrate
that the rate of interdye hole transport is prevented both on micrometer
and nanometer length scales by reducing the dye loading on the TiO<sub>2</sub> surface. The dye regeneration yield is quantified for films
with high and low dye loadings (with and without hole percolation
in the dye monolayer) infiltrated with varying levels of HTM. Interdye
hole transport can account for >50% of the overall dye regeneration
with low HTM pore filling. This is reduced to about 5% when the infiltration
of the HTM in the pores is optimized in 2 μm thick films. Finally,
we use hole transport in the dye monolayer to characterize the spatial
distribution of the HTM phase in the pores of the dyed mesoporous
TiO<sub>2</sub>
Oligothiophene Interlayer Effect on Photocurrent Generation for Hybrid TiO<sub>2</sub>/P3HT Solar Cells
Planells M, Abate A, Snaith HJ, Robertson N. Oligothiophene Interlayer Effect on Photocurrent Generation for Hybrid TiO /P3HT Solar Cells. ACS Applied Materials & Interfaces. 2014;6(19):17226-17235.A series of conjugated 3-hexylthiophene derivatives with a cyanoacrylic acid group has been prepared with conjugation length from one up to five thiophene units (1T–5T). The UV–vis spectra, photoluminescence spectra, electrochemical data and DFT calculations show lowering of LUMO energies and red-shift of absorption into the visible as the thiophene chain length increases. TiO2/P3HT solar cells were prepared with prior functionalization of the TiO2 surface by 1T–5T and studies include cells using undoped P3HT and using P3HT doped with H-TFSI. Without H-TFSI doping, photocurrent generation occurs from both the oligothiophene and P3HT. Doping the P3HT with H-TFSI quenches photocurrent generation from excitation of P3HT, but enables very effective charge extraction upon excitation of the oligothiophene. In this case, photocurrent generation increases with the light harvesting ability of 1T–5T leading to a highest efficiency of 2.32% using 5T. Overall, we have shown that P3HT can act in either charge generation or in charge collection, but does not effectively perform both functions simultaneously, and this illustrates a central challenge in the further development of TiO2/P3HT solar cells
Li-Fraumeni syndrome: cancer risk assessment and clinical management
Carriers of germline mutations in the TP53 gene, encoding the cell-cycle regulator and tumour suppressor p53, have a markedly increased risk of cancer-related morbidity and mortality during both childhood and adulthood, and thus require appropriate and effective cancer risk management. However, the predisposition of such patients to multiorgan tumorigenesis presents a specific challenge for cancer risk management programmes. Herein, we review the clinical implications of germline mutations in TP53 and the evidence for cancer screening and prevention strategies in individuals carrying such mutations, as well as examining the potential psychosocial implications of lifelong management for a ubiquitous cancer risk. In addition, we propose an evidence-based framework for the clinical management of TP53 mutation carriers and provide a platform for addressing the management of other cancer predisposition syndromes that can affect multiple organs