29 research outputs found

    Poesia visual, hipertexto e ciberpoesia

    Get PDF
    O recorte deste trabalho limita-se Ă  poesia visual e Ă  poesia hipertextual. Os procedimentos dividiram-se em trĂȘs fases: foram criados 28 poemas visuais, convergindo tĂ©cnica e esteticamente o texto escrito com imagens do design, da pintura e outros tipos de desenhos. Foram escolhidos oito desses poemas visuais para serem retrabalhados hipertextualmente por diferentes profissionais. Realizou-se uma parceria com a W3haus para o desenvolvimento de um site e o planejamento de mais alguns ciberpoemas

    Gene Signature Reveals Decreased SOX10-Dependent Transcripts in Malignant Cells From Immune Checkpoint Inhibitor-Resistant Cutaneous Melanomas

    Get PDF
    Evidence is mounting for cross-resistance between immune checkpoint and targeted kinase inhibitor therapies in cutaneous melanoma patients. Since the loss of the transcription factor, SOX10, causes tolerance to MAPK pathway inhibitors, we used bioinformatic techniques to determine if reduced SOX10 expression/activity is associated with immune checkpoint inhibitor resistance. We integrated SOX10 ChIP-seq, knockout RNA-seq, and knockdown ATAC-seq data from melanoma cell models to develop a robust SOX10 gene signature. We used computational methods to validate this signature as a measure of SOX10-dependent activity in independent single-cell and bulk RNA-seq SOX10 knockdown, cell line panel, and MAPK inhibitor drug-resistant datasets. Evaluation of patient single-cell RNA-seq data revealed lower levels of SOX10-dependent transcripts in immune checkpoint inhibitor-resistant tumors. Our results suggest that SOX10-deficient melanoma cells are associated with cross-resistance between targeted and immune checkpoint inhibitors and highlight the need to identify therapeutic strategies that target this subpopulation

    TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer.

    Get PDF
    A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer

    ErbB3-ErbB2 Complexes as a Therapeutic Target in a Subset of Wild-type BRAF/NRAS Cutaneous Melanomas.

    Get PDF
    The treatment options remain limited for patients with melanoma who are wild-type for both BRAF and NRAS (WT/WT). We demonstrate that a subgroup of WT/WT melanomas display high basal phosphorylation of ErbB3 that is associated with autocrine production of the ErbB3 ligand neuregulin-1 (NRG1). In WT/WT melanoma cells displaying high levels of phospho-ErbB3, knockdown of NRG1 reduced cell viability and was associated with decreased phosphorylation of ErbB3, its coreceptor ErbB2, and its downstream target, AKT. Similar effects were observed by targeting ErbB3 with either siRNAs or the neutralizing ErbB3 monoclonal antibodies huHER3-8 and NG33. In addition, pertuzumab-mediated inhibition of ErbB2 heterodimerization decreased AKT phosphorylation, cell growth in vitro, and xenograft growth in vivo. Pertuzumab also potentiated the effects of MEK inhibitor on WT/WT melanoma growth in vitro and in vivo. These findings demonstrate that targeting ErbB3-ErbB2 signaling in a cohort of WT/WT melanomas leads to tumor growth reduction. Together, these studies support the rationale to target the NRG1-ErbB3-ErbB2 axis as a novel treatment strategy in a subset of cutaneous melanomas

    CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth

    Get PDF
    Previous studies have demonstrated that loss of caveolin-1 (Cav-1) in stromal cells drives the activation of the TGF-ÎČ signaling, with increased transcription of TGF-ÎČ target genes, such as connective tissue growth factor (CTGF). In addition, loss of stromal Cav-1 results in the metabolic reprogramming of cancer-associated fibroblasts, with the induction of autophagy and glycolysis. However, it remains unknown if activation of the TGF-ÎČ / CTGF pathway regulates the metabolism of cancer-associated fibroblasts. Therefore, we investigated whether CTGF modulates metabolism in the tumor microenvironment. For this purpose, CTGF was overexpressed in normal human fibroblasts or MDA-MB-231 breast cancer cells. Overexpression of CTGF induces HIF-1α-dependent metabolic alterations, with the induction of autophagy/mitophagy, senescence, and glycolysis. Here, we show that CTGF exerts compartment-specific effects on tumorigenesis, depending on the cell-type. In a xenograft model, CTGF overexpressing fibroblasts promote the growth of co-injected MDA-MB-231 cells, without any increases in angiogenesis. Conversely, CTGF overexpression in MDA-MB-231 cells dramatically inhibits tumor growth in mice. Intriguingly, increased extracellular matrix deposition was seen in tumors with either fibroblast or MDA-MB-231 overexpression of CTGF. Thus, the effects of CTGF expression on tumor formation are independent of its extracellular matrix function, but rather depend on its ability to activate catabolic metabolism. As such, CTGF-mediated induction of autophagy in fibroblasts supports tumor growth via the generation of recycled nutrients, whereas CTGF-mediated autophagy in breast cancer cells suppresses tumor growth, via tumor cell self-digestion. Our studies shed new light on the compartment-specific role of CTGF in mammary tumorigenesis, and provide novel insights into the mechanism(s) generating a lethal tumor microenvironment in patients lacking stromal Cav-1. As loss of Cav-1 is a stromal marker of poor clinical outcome in women with primary breast cancer, dissecting the downstream signaling effects of Cav-1 are important for understanding disease pathogenesis, and identifying novel therapeutic targets

    TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer

    Get PDF
    A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer

    SOX10 requirement for melanoma tumor growth is due, in part, to immune-mediated effects

    Get PDF
    Developmental factors may regulate the expression of immune modulatory proteins in cancer, linking embryonic development and cancer cell immune evasion. This is particularly relevant in melanoma because immune checkpoint inhibitors are commonly used in the clinic. SRY-box transcription factor 10 (SOX10) mediates neural crest development and is required for melanoma cell growth. In this study, we investigate immune-related targets of SOX10 and observe positive regulation of herpesvirus entry mediator (HVEM) and carcinoembryonic-antigen cell-adhesion molecule 1 (CEACAM1). Sox10 knockout reduces tumor growth in vivo, and this effect is exacerbated in immune-competent models. Modulation of CEACAM1 expression but not HVEM elicits modest effects on tumor growth. Importantly, Sox10 knockout effects on tumor growth are dependent, in part, on CD8+ T cells. Extending this analysis to samples from patients with cutaneous melanoma, we observe a negative correlation with SOX10 and immune-related pathways. These data demonstrate a role for SOX10 in regulating immune checkpoint protein expression and anti-tumor immunity in melanoma

    Short-course Benznidazole treatment to reduce Trypanosoma cruzi parasitic load in women of reproductive age (BETTY): A non-inferiority randomized controlled trial study protocol

    Get PDF
    Background: Retrospective observational studies suggest that transmission of Trypanosoma cruzi does not occur in treated women when pregnant later in life. The level of parasitemia is a known risk factor for congenital transmission. Benznidazole (BZN) is the drug of choice for Preconceptional treatment to reduce parasitic load.The fear of treatment-related side effects limits the implementation of the Argentine guideline recommending BZN 60d/300 mg (or equivalent) treatment of T. cruzi seropositive women during the postpartum period to prevent transmission in a future pregnancy. A short and low dose BZN treatment might reduce major side effects and increase compliance, but its efficacy to reduce T. cruzi parasitic load compared to the standard 60d/300 mg course is not yet established. Clinical trials testing alternative BZN courses among women of reproductive age are urgently needed.Methods and design: We are proposing to perform a double-blinded, non-inferiority randomized controlled trial comparing a short low dose 30-day treatment with BZN 150 mg/day (30d/150 mg) vs. BZN 60d/300 mg. We will recruit not previously treated T. cruzi seropositive women with a live birth during the postpartum period in Argentina, randomize them at 6 months postpartum, and follow them up with the following specific aims:Specific aim 1: to measure the effect of BZN 30d/150 mg compared to 60d/300 mg preconceptional treatment on parasitic load measured by the frequency of positive Polymerase Chain Reaction (PCR) (primary outcome) and by real-time quantitative PCR (qPCR), immediately and 10 months after treatment.Specific aim 2: to measure the frequency of serious adverse events and/or any adverse event leading to treatment interruption.Fil: Cafferata, MarĂ­a L.. Instituto de Efectividad ClĂ­nica y Sanitaria; Argentina. Unicem; UruguayFil: Toscani, MarĂ­a A.. Instituto de Efectividad ClĂ­nica y Sanitaria; ArgentinaFil: Althabe, Fernando. Organizacion Mundial de la Salud; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica. Instituto de Efectividad ClĂ­nica y Sanitaria. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica; ArgentinaFil: Belizan, Jose. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica. Instituto de Efectividad ClĂ­nica y Sanitaria. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica; ArgentinaFil: Bergel, Eduardo. Instituto de Efectividad ClĂ­nica y Sanitaria; ArgentinaFil: Berrueta, Mabel. Instituto de Efectividad ClĂ­nica y Sanitaria; ArgentinaFil: Capparelli, Edmund V.. University of California; Estados UnidosFil: Ciganda, Álvaro. Instituto de Efectividad ClĂ­nica y Sanitaria; ArgentinaFil: Danesi, EmmarĂ­a. DirecciĂłn Nacional de Institutos de InvestigaciĂłn. AdministraciĂłn Nacional de Laboratorios e Institutos de Salud. Centro Nacional de DiagnĂłstico e Investigaciones Endemo-epidĂ©micas; ArgentinaFil: Dumonteil, Eric. University of Tulane; Estados UnidosFil: Gibbons, Luz. Instituto de Efectividad ClĂ­nica y Sanitaria; ArgentinaFil: Gulayin, Pablo ElĂ­as. Instituto de Efectividad ClĂ­nica y Sanitaria; ArgentinaFil: Herrera, Claudia. University of Tulane; Estados UnidosFil: Momper, Jeremiah D.. University of California; Estados UnidosFil: Rossi, Steven. University of California; Estados UnidosFil: Shaffer, Jeffrey G.. University of Tulane; Estados UnidosFil: Schijman, Alejandro Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; ArgentinaFil: Sosa-Estani, Sergio Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica. Instituto de Efectividad ClĂ­nica y Sanitaria. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica; ArgentinaFil: Stella, Candela B.. Instituto de Efectividad ClĂ­nica y Sanitaria; ArgentinaFil: Klein, Karen. Instituto de Efectividad ClĂ­nica y Sanitaria; ArgentinaFil: Buekens, Pierre. University of Tulane; Estados Unido

    Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma

    Get PDF
    Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells
    corecore