83 research outputs found

    Obturator prosthesis rehabilitation after maxillectomy: Functional and aesthetical analysis in 25 patients

    Get PDF
    The number of patients undergoing a surgical resection of the maxilla for oncological reasons is constantly increasing, the most common complication of which remains the communication between oral and nasal cavities. On the basis of data arising from the literature regarding the treatment options of maxillary oncological post-surgical defects, obturator prosthesis remains the most used worldwide. We studied 25 patients (with at least 1-year follow up) rehabilitated by obturator prosthesis after maxillary resection leading to oro-nasal communication, providing data on the objective/subjective evaluation of such rehabilitation and mastication performance measured by a two-color chewing gum test. The type of defect was classified according to the classification system proposed by Aramany. Among the patients in our study, 72% rated a higher score for either stability and retention than for aesthetic appearance, as confirmed by the Kapur score rated by clinicians. The two-color chewing gum test shows similar results as only one patient had insufficient chewing function. Interestingly, we found no correlation between the masticatory function and residual denture, confirming that the maxillary obturator remains a predictable solution in such patients regardless of the anatomical alterations following surgery

    Evaluating the impact of sex-biased genetic admixture in the americas through the analysis of haplotype data

    Get PDF
    A general imbalance in the proportion of disembarked males and females in the Americas has been documented during the Trans-Atlantic Slave Trade and the Colonial Era and, although less prominent, more recently. This imbalance may have left a signature on the genomes of modern-day populations characterised by high levels of admixture. The analysis of the uniparental systems and the evaluation of continental proportion ratio of autosomal and X chromosomes revealed a general sex imbalance towards males for European and females for African and Indigenous American ancestries. However, the consistency and degree of this imbalance are variable, suggesting that other factors, such as cultural and social practices, may have played a role in shaping it. Moreover, very few investigations have evaluated the sex imbalance using haplotype data, containing more critical information than genotypes. Here, we analysed genome-wide data for more than 5000 admixed American individuals to assess the presence, direction and magnitude of sex-biased admixture in the Americas. For this purpose, we applied two haplotype-based approaches, ELAI and NNLS, and we compared them with a genotype-based method, ADMIXTURE. In doing so, besides a general agreement between methods, we unravelled that the post-colonial admixture dynamics show higher complexity than previously described

    Mitochondrial DNA footprints from Western Eurasia in modern Mongolia

    Get PDF
    Mongolia is located in a strategic position at the eastern edge of the Eurasian Steppe. Nomadic populations moved across this wide area for millennia before developing more sedentary communities, extended empires, and complex trading networks, which connected western Eurasia and eastern Asia until the late Medieval period. We provided a fine-grained portrait of the mitochondrial DNA (mtDNA) variation observed in present-day Mongolians and capable of revealing gene flows and other demographic processes that took place in Inner Asia, as well as in western Eurasia. The analyses of a novel dataset (N = 2,420) of mtDNAs highlighted a clear matrilineal differentiation within the country due to a mixture of haplotypes with eastern Asian (EAs) and western Eurasian (WEu) origins, which were differentially lost and preserved. In a wider genetic context, the prevalent EAs contribution, larger in eastern and central Mongolian regions, revealed continuous connections with neighboring Asian populations until recent times, as attested by the geographically restricted haplotype-sharing likely facilitated by the Genghis Khan’s so-called Pax Mongolica. The genetic history beyond the WEu haplogroups, notably detectable on both sides of Mongolia, was more difficult to explain. For this reason, we moved to the analysis of entire mitogenomes (N = 147). Although it was not completely possible to identify specific lineages that evolved in situ, two major changes in the effective (female) population size were reconstructed. The more recent one, which began during the late Pleistocene glacial period and became steeper in the early Holocene, was probably the outcome of demographic events connected to western Eurasia. The Neolithic growth could be easily explained by the diffusion of dairy pastoralism, as already proposed, while the late glacial increase indicates, for the first time, a genetic connection with western Eurasian refuges, as supported by the unusual high frequency and internal sub-structure in Mongolia of haplogroup H1, a well-known post-glacial marker in Europe. Bronze Age events, without a significant demographic impact, might explain the age of some mtDNA haplogroups. Finally, a diachronic comparison with available ancient mtDNAs made it possible to link six mitochondrial lineages of present-day Mongolians to the timeframe and geographic path of the Silk Route

    Assessing temporal and geographic contacts across the Adriatic Sea through the analysis of genome-wide data from Southern Italy

    Get PDF
    Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes com-bined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits

    Clinical management and microscopic characterisation of fatique-induced failure of a dental implant. Case report

    Get PDF
    BACKGROUND: Osseointegrated endosseous implants are widely used for the rehabilitation of completely and partially edentulous patients, being the final prosthodontic treatment more predictable and the failures extremely infrequent. A case of fracture of an endosseous dental implant, replacing the maxillary first molar, occurring in a middle-age woman, 5 years after placement is reported. MATERIALS AND METHODS: The difficult management of this rare complication of implant dentistry together with the following rehabilitation is described. Additionally, the authors performed an accurate analysis of the removed fractured implant both by the stereomicroscope and by the confocal laser scanning microscope. RESULTS AND DISCUSSION: The fractured impant showed the typical signs of a fatigue-induced fracture in the coronal portion of the implant together with numerous micro-fractures in the apical one. Three dimensional imaging performed by confocal laser scanning microscope led easily to a diagnosis of "fatigue fracture" of the implant. The biomechanical mechanism of implant fractures when overstress of the implant components due to bending overload is discussed. CONCLUSION: When a fatigue-induced fracture of an dental implant occurs in presence of bending overload, the whole implant suffers a deformation that is confirmed by the alterations (micro-fractures) of the implant observable also in the osseointegrated portion that is easily appraisable by the use of stereomicroscope and confocal laser scanning microscope without preparation of the sample

    The mitogenome portrait of Umbria in Central Italy as depicted by contemporary inhabitants and pre-Roman remains

    Get PDF
    Umbria is located in Central Italy and took the name from its ancient inhabitants, the Umbri, whose origins are still debated. Here, we investigated the mitochondrial DNA (mtDNA) variation of 545 present-day Umbrians (with 198 entire mitogenomes) and 28 pre-Roman individuals (obtaining 19 ancient mtDNAs) excavated from the necropolis of Plestia. We found a rather homogeneous distribution of western Eurasian lineages across the region, with few notable exceptions. Contemporary inhabitants of the eastern part, delimited by the Tiber River and the Apennine Mountains, manifest a peculiar mitochondrial proximity to central-eastern Europeans, mainly due to haplogroups U4 and U5a, and an overrepresentation of J (30%) similar to the pre-Roman remains, also excavated in East Umbria. Local genetic continuities are further attested to by six terminal branches (H1e1, J1c3, J2b1, U2e2a, U8b1b1 and K1a4a) shared between ancient and modern mitogenomes. Eventually, we identified multiple inputs from various population sources that likely shaped the mitochondrial gene pool of ancient Umbri over time, since early Neolithic, including gene flows with central-eastern Europe. This diachronic mtDNA portrait of Umbria fits well with the genome-wide population structure identified on the entire peninsula and with historical sources that list the Umbri among the most ancient Italic populations.We are grateful to Soprintendenza Archeologia, Belle Arti e Paesaggio dell’Umbria, to Istituto Comprensivo Statale Foligno 5 (Perugia) and to all the volunteers who generously participated in this survey and made this research possible. We thank our colleagues Prof. Fausto Panara and Dr. Livia Lucentini with whom we have been discussing the feasibility and the first steps of this project, and Prof. Cristina Cereda, Dr. Gaetano Grieco, Dr. Marialuisa Valente, Dr. Nicole Huber and Jannika Oeke for technical support. We would like to thank the two anonymous reviewers for their suggestions and thoughtful comments. This research received support from: the Italian Ministry of Education, University and Research projects FIR2012 RBFR126B8I (to AO and AA), PRIN2017 20174BTC4R (to AA); Dipartimenti di Eccellenza Program (2018–2022)—Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia (to AA, AO, OS and AT) and Department of Biology, University of Florence (to DC); the Fondazione Cariplo (project no. 2018–2045 to AA, AO and AT); the Fon-dazione Carifol (2008 to AA) and the Tiroler Wissenschaftsfonds (TWF) (UNI-404/1998) (to MB)

    The Mitogenome Relationships and Phylogeography of Barn Swallows (Hirundo rustica)

    Get PDF
    The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51kya, into the Americas, from where a relatively recent (<20kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r.Transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife

    Development of CGEM technology for ultra-light tracking detectors : the KLOE-2 Inner Tracker

    Get PDF
    KLOE-2 at the ϕ\phi -factory DA\Phi NE of INFN Laboratori Nazionali di Frascati (LNF), is the first experiment using the GEM technology with a cylindrical geometry (CGEM), developed at the LNF by the Inner Tracker group and within the RD51 Collaboration. Four layers with 26÷\div 41 cm diameters and L = 70 cm, each realized as a Triple-GEM detector, compose this new detector. To produce GEM foils of unprecedented size, the novel single-mask manufacturing procedure has been developed with the TE-MPE-EM CERN group, together with the realization of a novel XV readout pattern. The adopted solutions allowed the total material budget to be kept below 2% of the radiation length X0X_{0}. The final assembly of the Inner Tracker has been completed on March 14, 2014. The production procedure will be reported together with the validation test results

    Performance of the micro-TPC Reconstruction for GEM Detectors at High Rate

    Full text link
    Gas detectors are one of the pillars of the research in fundamental physics. Since many years, a new concept of detectors, the Micro Pattern Gas Detectors, allows to overcome many of the problems of other types of commonly used detectors, as drift chambers and microstrips, reducing the discharge rate and increasing the radiation tolerance. Among these, one of the most commonly used is the Gas Electron Multiplier. Commonly deployed as fast timing detectors and triggers, due to their fast response, high rate capability and high radiation hardness, they can also be used as trackers. The center of gravity readout technique allows to overcome the limit of the digital pads, whose spatial resolution is constrained by the pitch size. The presence of a high external magnetic field can distort the electronic cloud and affect the spatial resolution. The micro-TPC reconstruction method allows to reconstruct the three dimensional particle position as in a traditional Time Projection Chamber, but within a drift gap of a few millimeters. This method brings these detectors into a new perspective for what concerns the spatial resolution in strong magnetic field. In this report, the basis of this new technique will be shown and it will be compared to the traditional center of gravity. The results of a series of test beam performed with 10 x 10 cm2 planar prototypes in magnetic field will also be presented. This is one of the first implementations of this technique for GEM detectors in magnetic field and allows to reach unprecedented performance for gas detectors, up to a limit of 120 micron at 1T, one of the world's best results for MPGDs in strong magnetic field. The micro-TPC reconstruction has been recently tested at very high rates in a test beam at the MAMI facility; preliminary results of the test will be presented.Comment: Proceedings for "2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)" (IEEE17) Conference, 21-28 October 2017, Atlanga, Georgia, USA (prepared for submission to IEEE Conference Record
    corecore