109 research outputs found

    Cumulative and Differential Effects of Early Child Care and Middle Childhood Out-of-School Time on Adolescent Functioning.

    Get PDF
    Effects associated with early child care and out-of-school time (OST) during middle childhood were examined in a large sample of U.S. adolescents (N = 958). Both higher quality early child care AND more epochs of organized activities (afterschool programs and extracurricular activities) during middle childhood were linked to higher academic achievement at age 15. Differential associations were found in the behavioral domain. Higher quality early child care was associated with fewer externalizing problems, whereas more hours of early child care was linked to greater impulsivity. More epochs of organized activities was associated with greater social confidence. Relations between early child care and adolescent outcomes were not mediated or moderated by OST arrangements in middle childhood, consistent with independent, additive relations of these nonfamilial settings

    Variability and magnitude of brain glutamate levels in schizophrenia: a meta and mega-analysis

    Get PDF
    Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan’s unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = −0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = −0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = −0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = −0.02, p < 0.001) and frontal white matter Glx (z = −0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies

    The overlap between vascular disease and Alzheimer’s disease - lessons from pathology

    Get PDF

    A PRECONDITIONED MINRES METHOD FOR OPTIMAL CONTROL OF WAVE EQUATIONS AND ITS ASYMPTOTIC SPECTRAL DISTRIBUTION THEORY

    No full text
    In this work, we propose a novel preconditioned Krylov subspace method for solving an optimal control problem of wave equations, after explicitly identifying the asymptotic spectral distribution of the involved sequence of linear coefficient matrices from the optimal control problem. Namely, we first show that the all-at-once system stemming from the wave control problem is associated to a structured coefficient matrix-sequence possessing an eigenvalue distribution. Then, based on such a spectral distribution of which the symbol is explicitly identified, we develop an ideal preconditioner and two parallel-in-time preconditioners for the saddle point system composed of two block Toeplitz matrices. For the ideal preconditioner, we show that the eigenvalues of the preconditioned matrix-sequence all belong to the set L( 3 2 , 1 2 R) â‹“ L( 1 2 , 3 2 R) well separated from zero, leading to mesh-independent convergence when the minimal residual method is employed. The proposed parallel-in-time preconditioners can be implemented efficiently using fast Fourier transforms or discrete sine transforms, and their effectiveness is theoretically shown in the sense that the eigenvalues of the preconditioned matrix-sequences are clustered around pm 1, which leads to rapid convergence. When these parallel-in-time preconditioners are not fastly diagonalizable, we further propose modified versions which can be efficiently inverted. Several numerical examples are reported to verify our derived localization and spectral distribution result and to support the effectiveness of our proposed preconditioners and the related advantages with respect to the relevant literature

    Distribution results for a special class of matrix sequences: joining approximation theory and asymptotic linear algebra

    No full text
    In a recent paper, Lubinsky proved eigenvalue distribution results for a class of Hankel matrix sequences arising in several applications, ranging from Padé approximation to orthogonal polynomials and complex analysis. The results appeared in Linear Algebra and its Applications, and indeed many of the statements, whose origin belongs to the field of approximation theory and complex analysis, contain deep results in (asymptotic) linear algebra. Here we make an analysis of a part of these findings by combining his derivation with previous results in asymptotic linear algebra, showing that the use of an already available machinery shortens considerably the considered part of the derivations. Remarks and few additional results are also provided, in the spirit of bridging (numerical and asymptotic) linear algebra results and those coming from analysis and pure approximation theory

    The anti-reflective transform and regularization by filtering

    No full text
    Filtering methods are used in signal and image restoration to reconstruct an approximation of a signal or image from degraded measurements. Filtering methods rely on computing a singular value decomposition or a spectral factorization of a large structured matrix. The structure of the matrix depends in part on imposed boundary conditions. Anti-reflective boundary conditions preserve continuity of the image and its (normal) derivative at the boundary, and have been shown to produce superior reconstructions compared to other commonly used boundary conditions, such as periodic, zero and reflective. The purpose of this paper is to analyze the eigenvector structure of matrices that enforce anti-reflective boundary conditions. In particular, a new anti-reflective transform is introduced, and an efficient approach to computing filtered solutions is proposed. Numerical tests illustrate the performance of the discussed methods

    A sine transform based preconditioned MINRES method for all-at-once systems from constant and variable-coefficient evolutionary PDEs

    No full text
    In this work, we propose a simple yet generic preconditioned Krylov subspace method for a large class of nonsymmetric block Toeplitz all-at-once systems arising from discretizing evolutionary partial differential equations. Namely, our main result is to propose two novel symmetric positive definite preconditioners, which can be efficiently diagonalized by the discrete sine transform matrix. More specifically, our approach is to first permute the original linear system to obtain a symmetric one and subsequently develop desired preconditioners based on the spectral symbol of the modified matrix. Then, we show that the eigenvalues of the preconditioned matrix sequences are clustered around ± 1 , which entails rapid convergence when the minimal residual method is devised. Alternatively, when the conjugate gradient method on the normal equations is used, we show that our preconditioner is effective in the sense that the eigenvalues of the preconditioned matrix sequence are clustered around unity. An extension of our proposed preconditioned method is given for high-order backward difference time discretization schemes, which can be applied on a wide range of time-dependent equations. Numerical examples are given, also in the variable-coefficient setting, to demonstrate the effectiveness of our proposed preconditioners, which consistently outperforms an existing block circulant preconditioner discussed in the relevant literature
    • …
    corecore