44 research outputs found

    Classification of human motion based on affective state descriptors

    Get PDF
    Cataloged from PDF version of article.Human body movements and postures carry emotion-specific information. On the basis of this motivation, the objective of this study is to analyze this information in the spatial and temporal structure of the motion capture data and extract features that are indicative of certain emotions in terms of affective state descriptors. Our contribution comprises identifying the directly or indirectly related descriptors to emotion classification in human motion and conducting a comprehensive analysis of these descriptors (features) that fall into three different categories: posture descriptors, dynamic descriptors, and frequency-based descriptors in order to measure their performance with respect to predicting the affective state of an input motion. The classification results demonstrate that no single category is sufficient by itself; the best prediction performance is achieved when all categories are combined. Copyright © 2013 John Wiley & Sons, Ltd

    Attention-Aware Disparity Control in interactive environments

    Get PDF
    Cataloged from PDF version of article.Our paper introduces a novel approach for controlling stereo camera parameters in interactive 3D environments in a way that specifically addresses the interplay of binocular depth perception and saliency of scene contents. Our proposed Dynamic Attention-Aware Disparity Control (DADC) method produces depth-rich stereo rendering that improves viewer comfort through joint optimization of stereo parameters. While constructing the optimization model, we consider the importance of scene elements, as well as their distance to the camera and the locus of attention on the display. Our method also optimizes the depth effect of a given scene by considering the individual user’s stereoscopic disparity range and comfortable viewing experience by controlling accommodation/convergence conflict. We validate our method in a formal user study that also reveals the advantages, such as superior quality and practical relevance, of considering our method.© Springer-Verlag Berlin Heidelberg 2013

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Attention-aware disparity control in interactive environments

    Get PDF
    Our paper introduces a novel approach for controlling stereo camera parameters in interactive 3D environments in a way that specifically addresses the interplay of binocular depth perception and saliency of scene contents. Our proposed Dynamic Attention-Aware Disparity Control (DADC) method produces depth-rich stereo rendering that improves viewer comfort through joint optimization of stereo parameters. While constructing the optimization model, we consider the importance of scene elements, as well as their distance to the camera and the locus of attention on the display. Our method also optimizes the depth effect of a given scene by considering the individual user's stereoscopic disparity range and comfortable viewing experience by controlling accommodation/convergence conflict. We validate our method in a formal user study that also reveals the advantages, such as superior quality and practical relevance, of considering our method. © 2013 Springer-Verlag Berlin Heidelberg

    Perceptual caricaturization of 3D models

    Get PDF
    Caricature is an illustration of a person or a subject that uses a way of exaggerating the most distinguishable characteristic traits and simplifying the common features in order to magnify the unique features of the subject. Recently, automatic caricature generation has become a research area due to the advantageous features of amusement in the fields such as network, communications, online games, and the animation industry. The aim of this study is to present a perceptual caricaturization approach practicing the concept of exaggeration, which is very common in traditional art and caricature, on 3D mesh models synthesizing the idea of mesh saliency. © 2013 Springer-Verlag London

    A SEPT1-based scaffold is required for Golgi integrity and function

    Get PDF
    Compartmentalization of membrane transport and signaling processes is of pivotal importance to eukaryotic cell function. While plasma membrane compartmentalization and dynamics are well known to depend on the scaffolding function of septin GTPases, the roles of septins at intracellular membranes have remained largely elusive. Here, we show that the structural and functional integrity of the Golgi depends on its association with a septin 1 (SEPT1)-based scaffold, which promotes local microtubule nucleation and positioning of the Golgi. SEPT1 function depends on the Golgi matrix protein GM130 (also known as GOLGA2) and on centrosomal proteins, including CEP170 and components of γ-tubulin ring complex (γ-Turc), to facilitate the perinuclear concentration of Golgi membranes. Accordingly, SEPT1 depletion triggers a massive fragmentation of the Golgi ribbon, thereby compromising anterograde membrane traffic at the level of the Golgi
    corecore