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ABSTRACT

Human body movements and postures carry emotion-specific information. On the basis of this motivation, the objective of
this study is to analyze this information in the spatial and temporal structure of the motion capture data and extract features
that are indicative of certain emotions in terms of affective state descriptors. Our contribution comprises identifying the
directly or indirectly related descriptors to emotion classification in human motion and conducting a comprehensive anal-
ysis of these descriptors (features) that fall into three different categories: posture descriptors, dynamic descriptors, and
frequency-based descriptors in order to measure their performance with respect to predicting the affective state of an input
motion. The classification results demonstrate that no single category is sufficient by itself; the best prediction performance
is achieved when all categories are combined. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Much of the difficulty in creating character animation is to
give the character representation of expression or person-
ality. Even though, in traditional animation, animators can
achieve this challenge in a time-consuming key-framing
processes, the spreading availability of motion capture
technology and large amount of human motion databases
have increased the importance of reusability of motion cap-
ture data in human animation based on the analysis and
understanding of human motion. It is well known that the
personality of a character is conveyed through emotions,
and human motion carries important visual cues associ-
ated with emotions. On the basis of this motivation, the
objective of this study is to analyze these cues from spa-
tial and temporal structure of the motion capture data and
classify human motions according to one of their stylis-
tic variations—emotion or the energy level of the actor
(low energy interpreted as sad, relaxed; high energy as
happy, angry).

The term emotion is sometimes used in reference to the
emotional state and is also called the affective state, which

†Supporting information may be found in the online version of this

article.

has been studied in detail in emotion research and affective
science. Affective science is mainly concerned with the
questions of which features of human motion are impor-
tant for emotional communication and how human beings
use them in order to distinguish one emotion from another.
Dimensional models of emotion or affective state can lie
in two or three dimensions. Several two-dimensional mod-
els of emotion have been developed. In our study, among
these models, we apply the circumplex model of emotion
that was first developed by James Russell [1]. Figure 1
shows the circumplex model of affective states. In this
context, we will use the terms emotion and affective state
interchangeably.

Although it has been debated that the specific body
movements may be only indicative of the intensity of
the emotion, our study presents an affective state analy-
sis and classification of human motion capture data, which
attempts to demonstrate that emotion-specific cues in body
movements and postures are indicative of certain emotions.
Our main contributions comprise defining and categoriz-
ing the affective state descriptors that are mostly adapted
from the past and current approaches in affective science
and attempting to identify the directly or indirectly related
descriptors to emotion classification in human motion. We
have investigated three categories of descriptors—posture-
based, dynamic, and frequency-based—and measured their
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Figure 1. The circumplex model (Russell 1980).

performance with respect to predicting the affective state of
the input motion. The results indicate that no single cate-
gory is sufficient to predict the emotional state by itself,
and the best prediction performance is achieved when all
the categories are combined.

2. RELATED WORK

The motion recognition and classification problem draws
interest in a variety of major disciplines including robotics,
computer animation, and psychology. It comprises identi-
fying two different types of human actions—primary and
secondary themes [2]. Whereas primary themes represent
basic human actions such as walking, running, or jump-
ing, secondary themes consider the stylistic variations in
the motion caused by the actor’s emotion, gender, or age.
Our approach falls into the second type of classification
with respect to variations caused by different actors.

A large body of work exists for the recognition and clas-
sification of human action based on the primary theme.
These approaches aim the recognition of primary human
actions such as walking, running, kicking, and punching
and classifying them according to their spatial and tem-
poral structure. Among them, a considerable amount of
research focus on the recognition of human actions from
video images [3,4]. An alternative to detecting actions from
video sequences is a data-driven approach, using available
3D motion capture technology [5,6].

In these works, the motion recognition and classi-
fication methods have been based on primary human
actions regardless of the actor’s style. Our goal is to ana-
lyze and classify human motions associated with specific

emotions, which falls into the secondary theme. Related
to our work, a number of studies target the classification
of the emotional state in human motion. Troje has applied
[7] Principal Component Analysis (PCA) in order to learn
lower-dimensional representations of human walking in
different emotional states. There have also been studies
detecting emotion from static body posture descriptors.
Coulson has conducted experiments [8] where observers
classified the emotions from static images. Another impor-
tant descriptor for the recognition of emotion in motion
is kinematical information, such as velocity, acceleration,
or jerk. Wallbot [9] found that spatio-temporal features of
body movements, rather than static body postures are more
indicative of differences between emotions and changes in
energy states. Atkinson et al. [10] investigated the exag-
geration of whole body movements and found that exag-
geration of body movements would increase the emotional
intensity and enhance emotion recognition. In another
work, Kapur et al. [11] used dynamics of motion fea-
tures and analyzed the performance of different classifiers
including neural networks and support vector machines
(SVMs). Although classifiers achieved a correct recogni-
tion rate of 84%, in the user study, humans were able to
classify the motions with 93% of accuracy.

Although the main aim of this study is the classifica-
tion of human action and variations, there are also pub-
lications that study how to synthesize human motion by
understanding and computationally modeling them. Rose
et al. present the Verbs-and-Adverbs approach for interpo-
lating styles for motion synthesis [12]. Grochow et al. use
the Scaled Gaussian Process Latent Variable Model [13],
which make use of a training set to capture the style of the
actor for motion synthesis and inverse kinematics.
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3. APPROACH

This paper proposes a style-based classification solution
for recognizing and classifying secondary themes in a
given motion sequence, on the basis of affective state
descriptors. Our supervised motion classification system
consists of two phases, as illustrated in Figure 2. The
first one is the training phase, where we learn affective
state descriptors from a human motion training set. The
training set is recorded with multiple actors performing
the same walking action in a variety of affective states
(sad, happy, angry, and relaxed). Consecutively, we per-
form space warping and time warping of the input motions
to the captured motion sequences in order to bring the input
motion data in a form that is invariant with respect to space
and time. Then, we learn affective state descriptors from
the processed motion data set. For this purpose, we inves-
tigate and compare several alternatives for mapping the
motion attributes to affective descriptor features.

Then, in the second—prediction—phase, given a new
input motion sequence, we classify it with respect to the
learned affective states, by utilizing the SVM learning
algorithm for classifying the features.

3.1. Data Acquisition

We recorded the training set using a Vicon motion capture
system with eight cameras, with capture rate at 120 Hz.
Overall, 42 markers were positioned on the suit of the
actors following the Vicon motion capture guidelines. The
absolute position of the root node and joint orientations in
Euler angles were used for representing each pose. The

joints used during the analysis were head, neck, lower
back, thorax, right and left collar, humerus, wrist elbow,
femur, tibia, and foot.

We recorded the training set using 12 actors, each per-
forming the same action in a variety of emotions (sad,
happy, angry, and relaxed). Overall, 96 motion samples
were captured. During the motion capture process, all
actors were recorded while walking in an approximately
straight line with the same number of steps. Each actor
performed walking in four different emotional states, each
of which was repeated several times. The actors were
instructed to avoid the use of secondary gestures that
would interrupt their rhythmic walking pattern. For exam-
ple motion clips used as the training data, please see
Supporting information.

3.2. Data Preprocessing

One of the challenges that emerge while performing sta-
tistical analysis on time series data such as motion cap-
ture sequences is the spatial and temporal misalignments.
Therefore, all motion data should be unified in both time
and space dimension in order to cancel the variations in
spatio-temporal scale of motion examples and to establish
the correspondence between different motion sequences.
For this purpose, we apply two preprocessing steps: space
warping for making the captured motions translation and
rotation invariant and time warping for warping the motion
samples to the same duration.
Space Warping. The major challenge while analyzing
motion data is the variances with respect to the global root

Figure 2. Overview of the system.
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position and orientation in the absolute world coordinate
system. Therefore, before applying any similarity analysis
over the motion data using global positions of the joints,
the motion examples should be translation and rotation
invariant. We unify the movement direction of each motion
sequence, by first translating the motion samples to the ori-
gin. Then, to unify their directions, we rotate each motion
sequence around the vertical axis so that the direction of
each motion is aligned to the same axis (x-axis, in our sys-
tem). For finding the angle � for each motion that aligns it
to the axis, we use a simple quadratic optimization, similar
to the approach of Ma et al. [14]:

�� D arg min
�
jjR.�/dir.M/� xjj2 (1)

Time Warping. In the next step, we apply the dynamic
time warping algorithm (DTW) [15] to remove the varia-
tions in the dimensions of motion sequences by compar-
ing two sequences of different length for similarity and
nonlinearly shifting in time axis. Given two time series
A D .a1; a2; : : : ; an/ and B D .b1; b2; : : : ; bm/ in dif-
ferent number of frames, we select the longest sequence as
the reference sequence, and the other one is time-warped
over the same dimension of the reference sequence. The
algorithm firstly constructs the cost matrix by calculat-
ing pairwise distance between two sequence, C 2 <nxm.
Then, an optimal path is found by walking through the low
cost areas in the cost matrix that gives the correspondences
between the two sequences. Figure 3 shows the results of
two different short motion sequences after space and time
warping.

It is well understood that the spatio-temporal charac-
teristics of human motion are good indicators of style.
Nonlinear time alignment methods, such as DTW, may
change the characterization of temporal stylistic features of
the motion [16]. In order not to lose temporal information
extracted from dynamic descriptors, we apply DTW to
dynamic feature set after the features are extracted.

Figure 3. Two different short motion sequences after space and
time warping.

3.3. Style-based Feature Extraction

Although the human body can perform complex actions, it
is well understood that human motion can also carry the
indicative personal information such as the inner intention
of the movement or emotional state of the performer. In
most situations, these emotion-specific subtle changes in
the qualities of movement can be identified and used as the
emotional state features.

Our work is mainly concerned with the question of
which features of human motion can be used for classifi-
cation. Therefore, we consider and compare several alter-
natives of features extracted from motion sequences and
represent them as affective state descriptors. It is possible
to divide these emotional state descriptors or features into
different categories: (i) posture descriptors, (ii) dynamic
descriptors, and (iii) frequency-based descriptors. Posture
descriptors refer to the features specified in terms of body
posture, whereas dynamic descriptors describes the fea-
tures influenced by movement. Frequency-based descrip-
tors are based on frequency analysis of the motion and can
give specific patterns related to emotional-specific cues in
the motion. In the next subsections, we first review these
descriptors and discuss several alternative forms of setting
up feature vectors for classification.

3.3.1. Posture Descriptors.

Posture descriptors are used in emotion recognition and
can be extracted from body postures.
End Effector Positions. Although the position of each
joint can be selected for the feature vector at first sight, this
is not an effective solution. Human body motion is known
to have significant redundancies. Furthermore, the impor-
tance of each joint may differ from one motion to another.
For example, the position of the femur joint gives more
information compared with the position of a toe joint in a
walking motion.

To overcome this problem, while also avoiding the man-
ual adjustment of joint importance values by the animator,
we use the position of the end effectors as positional fea-
tures in this work. Therefore, we construct a feature vector
that consists of four end effectors for the wrist and the ankle
joints and an additional end effector position for the head.

The idea of considering the positions of four end effec-
tors and head as a feature vector has already been proposed
by Kruger et al. [17]. As it is also observed in this work,
the positions and the orientations of the end effectors are
suitable for describing a human pose because they entirely
specify the geometry of the arms and legs.

The end effector position feature vectorE is constructed
as follows:

E D

2
6664

e1
e2
:::

en

3
7775 (2)
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where n is the number of frames, and vector ei D

Œpx1; px2; : : : ; px5�
T holds the x-axis component of the

five end effector positions. The main reason for excluding
the y-axis and z-axis components is that x-axis contains
more variance and thus is more suitable for observing
the cyclic swinging of the limbs during the motion since
the motion directions are aligned to the x-axis in the
preprocessing step.
End Effector Orientations. The orientation of the end
effectors is also an indicator of postural variations in a
motion, and they are statistically dependent on the end
effector positions. End effector angles are calculated as
the angle � between successive two segments connected
to the end effectors, such as the tibia and toe corre-
sponds the angle of ankle. The output feature vector is thus
constructed as follows:

T D

2
6664

t1
t2
:::

tn

3
7775 (3)

where the vector ti D Œ�1; �2; : : : ; �5�
T holds the x-axis

components of the end effector orientations.
Bounding Box. Another feature that we consider is the
bounding box of the whole body pose and its change in
frames in the motion. The main reason to select this fea-
ture for emotional descriptor is that it is an indicator of
how the actor uses the space during the motion, such that
energetic motions use more space by spreading their limbs
more than the ones with lower energy. The feature vectorB
that holds the volume of the bounding box for one motion
sample with n number of frames is as follows:

B D

2
6664

b1
b2
:::

bn

3
7775 (4)

where bi is a scalar value and gives the volume of the
bounding box for the i th frame of the motion.
Weight Shift (Center of Mass). Weight shifting describes
how the body’s center of mass moves through space. The
sense of weight is an essential component of believable
characters. How an actor’s weight shifts through space dur-
ing the action can give information about the style of the
actor. Given the mass vector of the joint segments mj , the
center of mass for a posture in the motion segment at time
t are given by

ci D

P
j2N mjpijP
j2N mj

(5)

whereN is the number of segments in the body. The center
of mass feature vector C is constructed as follows:

C D

2
6664

c1
c2
:::

cn

3
7775 (6)

where the vector ci holds the coordinates of the center of
mass for frame i .

3.3.2. Dynamic Descriptors.

Even though the time series data of poses, as described
previously, is an important feature set for emotion recogni-
tion in motion, dynamic cues such that velocity, accelera-
tion, and jerk of the joints are also needed in order to better
recognize certain emotions. Several related studies [8,18]
suggest that significant information was lost in expressed
emotions by reducing dynamic aspects of body motion
to static postures. Dynamic descriptors express perception
of emotions influenced by movement kinematics such as
speed, acceleration, and jerk derived from first, second, and
third derivatives of the joint positions.
Velocity. When a character is in excited or annoyed state
(the first and second quadrants in Russel’s circumplex
model in Figure 1), the timing of his or her movements will
be faster. Conversely, when the character is in the third and
fourth quadrants, the movements will be slower. Therefore,
the linear velocity is first used for constructing the dynamic
features.

The velocity feature vector V is constructed as follows:

V D

2
6664

v1
v2
:::

vn

3
7775 (7)

where vi is a 3N dimensional vector that holds the linear
velocities of each segment at frame i and is calculated as
vi D pi � pi�1.
Acceleration. The change in the speed gives more infor-
mation about the mood of the character. For example,
the characters with energy would do sharper movements
with changing speed. In addition, the acceleration can give
information about weight of the character. For example, the
more mass the character has, the longer duration the accel-
eration is required. Given the velocity vector for a posture
vi at time t , the acceleration vector for a motion sequences
at time t is given by

ai D vi � vi�1 (8)

and the acceleration feature vector A is constructed simi-
larly.
Jerk. Jerk is the rate of changes of acceleration or force,
and it is captured by taking the derivative of accelera-
tion with respect to time. Jerk is a measure for identifying
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changes in acceleration and therefore changes in applied
torques to the joints. Given the acceleration vector for a
posture ai at time t , the jerk vector for a motion sequences
at time t are given by

ji D ai � ai�1 (9)

and the jerk feature vector J is constructed similarly.

3.3.3. Frequency-based Descriptors.

In addition to static and dynamic descriptors listed previ-
ously, our third set of descriptors represents the motion data
in frequency domain. This provides the ability to determine
small signals buried within complex time domain motion
signals that can carry information about some character-
istic patterns related to emotional cues. When converting
signals from time domain to frequency domain, we use
the standard fast Fourier transformation (FFT). FFT enable
us to decompose signal into components of different fre-
quencies. The input of the FFT is the end effector position
vector described in Section 3.3.1, and the output vector
contains the sum of the positive and negative-frequency
terms. These frequency terms are used in order to describe
our frequency-based descriptors as follows:

F D

2
6664

f1
f2
:::

f5

3
7775 (10)

where the vector fi D Œd1; d2; : : : ; dn�
T is an n-

dimensional vector, which describes the frequency coeffi-
cients output from FFT for each position trajectory of the
end effectors and n denotes the number of frames.

3.4. Motion Classification

To learn the affective state features, we use the SVM learn-
ing algorithm, which is a state-of-the-art classifier tech-
nique for multi-class classification. There are several SVM
multi-class classification strategies: one-against-one, one-
against-rest, and the directed acyclic graph SVM (DAG-
SVM) [19]. Among these alternatives, the one-against-one
method trains the classifier by choosing every different two
classes such that there will be n� .n�1/=2 possible binary
subclassifiers for a problem of n classes. For prediction of
a new motion sequence, every subclassifier judges its cat-
egory, and the category voted for highest score is selected
as the class of the test data. On the other hand, the one-
against-rest method uses a two-class SVM and compares
every given class with all the others put together such that
n subclassifiers are constructed. DAG-SVM method sepa-
rates train data into two category and goes on separation
in each category until only two classes are left. Because
we use four affective state classes for classification in this
work, we use the one-against-one method; however, for
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larger set of classes, the one-against-rest and DAG-SVM
can also be used.

In linear SVM, given a training data set D with m

input vectors x1; : : : ; xm and their corresponding labels
y1; : : : ; ym, where yi 2 �1;C1 and xi is a p-dimensional
real vector, the class of a new input data is determined by
evaluating the sign of y.x/:

y.x/D wT �.x/C b (11)

It also should be noted that, although in linear SVM,
the decision boundary is wT x C b, in nonlinear SVM, the
radial basis function (RBF) is

y.x/D wT e�� jjxjj
2

C b (12)

where �.x/D e�� jjxjj
2

defines the Gaussian RBF.
Basically, three main issues need to be considered dur-

ing support vector classification: feature selection, kernel
model selection, and the selection of the parameters of the
kernel function. Because in this work we have more than
two classes (sad, happy, angry, and relaxed), multi-class

SVM is used with the corresponding class labels: 0 (sad),
1 (happy), 2 (angry), 3 (relaxed). In our case, the input fea-
ture vectors are constructed by combining feature sets from
different feature categories. There are three feature sets:

P D

2
664
E

T

B

C

3
775 ;D D

2
4
V

A

J

3
5 ;F D � F �

: (13)

for posture feature set, dynamic feature set, and frequency-
based feature set, respectively.

3.4.1. Model Selection.

As discussed earlier, SVM presents several different
functions in order to map data to higher dimensional
spaces. These kernel function are linear, polynomial, RBF
and sigmoid. Whereas there are two parameters for an
RBF kernel, C and � , linear kernel has only a penalty
parameter. In most cases, the RBF kernel is reasonable first
choice. Best combination of C and � can be determined
by a grid search with exponentially growing sequences of
C and � , for example, C 2 f2�5; 2�3; : : : ; 213; 215gI � 2

Figure 4. Classification results.

Figure 5. Classification results.
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f2�15; 2�13; : : : ; 21; 23g. In our study, we conducted pilot
tests where we compare different values, and the results
showed that the RBF kernel yields better performance and
accuracy than the other kernels for this application.

3.4.2. Model Validation.

Our classifier was tested with leave-one-out cross valida-
tion to evaluate the accuracy of our model. During valida-
tion, we selected a single example motion sequence from
the database as the validation sample, and the remaining
clips were as the training data. We repeated this procedure
until each example motion in the database has been used
once as the validation sample. The prediction of the classi-
fier is considered to be true if the predicted class label by
classifier matches the class label of the test motion data.

4. RESULTS

In this section, the experimental results for several combi-
nations of features that are explained in Section 3 are ana-
lyzed in terms of their classification accuracy. We designed
seven experiments to evaluate the accuracy of features.
In the first three experiments, the frequency-based fea-
ture set F , posture feature set P and dynamic feature set
D were tested separately. For the following three experi-
ments, these feature sets were paired together in a vector
form of ŒF ; P �, ŒF ;D� and ŒP ;D�. In the seventh and last
experiment, all features were combined together resulting
in a vector ŒF ; P ;D�.

For the evaluation of the experiments, confusion matri-
ces [20] are presented that contain information about actual
and predicted classification carried out in the classifica-
tion process. They are also used for evaluating the perfor-
mance of the classification. Table 1 reports the confusion
matrix for each experimental condition. In each section of
the table, the values on the diagonal represent the correct
recognition rates, whereas the remaining entries gives the
rates of incorrect hits (classifications).

Figure 4 shows the results of the style-based classifica-
tion of human motion graphically. The overall success of
the system is 91% where the feature vector is the combi-
nation of three feature sets ŒF ; P ;D� used in experiment 7.
The experiment results show that the choice of features has
a significant impact on the accuracy of prediction.

Because determining the best kernel to use in classifi-
cation is important, we also compared the classification
results of the linear kernel to the RBF kernel. Figure 5
shows that the RBF kernel yields better prediction results
than the linear kernel for classification. However, a careful
parameter search of the kernel parameters was necessary.
Especially, for the RBF kernel parameters, we used C D
1000 and � D 0:0001.

5. CONCLUSION

On the basis of the motivation that the style of an actor is
conveyed through emotion, the study presented here is an

attempt to address the question whether there are emotion-
specific indicators in human motion and whether they can
be extracted and quantified into some measures in terms
of affective state descriptors. We conducted a comprehen-
sive analysis of these descriptors (features) that fall into
three different categories—posture descriptors, dynamic
descriptors, and frequency-based descriptors, and com-
pared their prediction accuracy. According to the experi-
mental results, the most accurate results are achieved when
all the descriptors are combined. With a limited set of
emotional states (sad, happy, angry, and relaxed) that rep-
resent each quadrant of Russell’s circumplex model, the
prediction accuracy was as high as 91%.

There are several limitations of the system, which we
plan to address in the future work. First, we selected only
four representative emotional states from the more com-
prehensive set of emotions, and the method would be ben-
eficial with more states. Secondly, although our classifier
was accurate, it would be necessary to compare its perfor-
mance with the classification answers by real users. Third,
we have investigated the walking motion, for a more accu-
rate unification of the training set; however, more general
types of motions need to be investigated. Furthermore, it
would be beneficial to investigate other types of affec-
tive descriptors, particularly semantic ones. Finally, future
work needs to address motion synthesis with the use of the
learned affective state descriptors.
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