68 research outputs found

    Combining Biomimetic Block Copolymer Worms with an Ice-Inhibiting Polymer for the Solvent-Free Cryopreservation of Red Blood Cells.

    Get PDF
    The first fully synthetic polymer-based approach for red-blood-cell cryopreservation without the need for any (toxic) organic solvents is reported. Highly hydroxylated block copolymer worms are shown to be a suitable replacement for hydroxyethyl starch as a extracellular matrix for red blood cells. When used alone, the worms are not a particularly effective preservative. However, when combined with poly(vinyl alcohol), a known ice-recrystallization inhibitor, a remarkable additive cryopreservative effect is observed that matches the performance of hydroxyethyl starch. Moreover, these block copolymer worms enable post-thaw gelation by simply warming to 20 °C. This approach offers a new solution for both the storage and transport of red blood cells and also a convenient matrix for subsequent 3D cell cultures

    Synthesis, self-assembly, and immunological activity of α-galactose-functionalized dendron–lipid amphiphiles

    Get PDF
    Nanoassemblies presenting multivalent displays of biologically active carbohydrates are of significant interest for a wide array of biomedical applications ranging from drug delivery to immunotherapy. In this study, glycodendron–lipid hybrids were developed as a new and tunable class of dendritic amphiphiles. A modular synthesis was used to prepare dendron–lipid hybrids comprising distearylglycerol and 0 through 4th generation polyester dendrons with peripheral protected amines. Following deprotection of the amines, an isothiocyanate derivative of C-linked α-galactose (α-Gal) was conjugated to the dendron peripheries, affording amphiphiles with 1 to 16 α-Gal moieties. Self-assembly in water through a solvent exchange process resulted in vesicles for the 0 through 2nd generation systems and micelles for the 3rd and 4th generation systems. The critical aggregation concentrations decreased with increasing dendron generation, suggesting that the effects of increasing molar mass dominated over the effects of increasing the hydrophilic weight fraction. The binding of the assemblies to Griffonia simplicifolia Lectin I (GSL 1), a protein with specificity for α-Gal was studied by quantifying the binding of fluorescently labeled assemblies to GSL 1-coated beads. It was found that binding was enhanced for amphiphiles containing higher generation dendrons. Despite their substantial structural differences with the natural ligands for the CD1d receptor, the glycodendron–lipid hybrids were capable of stimulating invariant natural killer T (iNKT) cells, a class of innate-like T cells that recognize lipid and glycolipid antigens presented by CD1d and that are implicated in a wide range of diseases and conditions including but not limited to infectious diseases, diabetes and cancer

    Hepatitis C Virus Glycan-Dependent Interactions and the Potential for Novel Preventative Strategies

    No full text
    Chronic hepatitis C virus (HCV) infections continue to be a major contributor to liver disease worldwide. HCV treatment has become highly effective, yet there are still no vaccines or prophylactic strategies available to prevent infection and allow effective management of the global HCV burden. Glycan-dependent interactions are crucial to many aspects of the highly complex HCV entry process, and also modulate immune evasion. This review provides an overview of the roles of viral and cellular glycans in HCV infection and highlights glycan-focused advances in the development of entry inhibitors and vaccines to effectively prevent HCV infection

    Cell-Surface Glyco-Engineering by Exogenous Enzymatic Transfer Using a Bifunctional CMP-Neu5Ac Derivative

    No full text
    Cell-surface engineering strategies that permit long-lived display of well-defined, functionally active molecules are highly attractive for eliciting desired cellular responses and for understanding biological processes. Current methodologies for the exogenous introduction of synthetic biomolecules often result in short-lived presentations, or require genetic manipulation to facilitate membrane attachment. Herein, we report a cell-surface engineering strategy that is based on the use of a CMP-Neu5Ac derivative that is modified at C-5 by a bifunctional entity composed of a complex synthetic heparan sulfate (HS) oligosaccharide and biotin. It is shown that recombinant ST6GAL1 can readily transfer the modified sialic acid to N-glycans of glycoprotein acceptors of living cells resulting in long-lived display. The HS oligosaccharide is functionally active, can restore protein binding, and allows activation of cell signaling events of HS-deficient cells. The cell-surface engineering methodology can easily be adapted to any cell type and is highly amenable to a wide range of complex biomolecules

    Efficient Synthesis of Azido Sugars using Fluorosulfuryl Azide Diazotransfer Reagent

    No full text
    Azide-containing sugars are important tools for the synthesis of biologically relevant 1,2-cis-glycosides and for bioconjugation chemistry. Previous strategies for the installation of a non-participating C2-azido functionality use harsh conditions and long reaction times. Herein, we report the synthesis of azido sugars using fluorosulfuryl azide (FSO2N3; 1) with a Cu(II) catalyst as a safe and efficient diazotransfer reagent. Common hexosamine substrates were converted to 2-azido-2-deoxy sugars in less than 5 minutes in quantitative yield. Glycosyl donors with orthogonal protecting groups were readily prepared from these azido sugars with good overall yield and a single column purification. The diazotransfer protocol was also efficiently used on other amino sugar derivatives, including aminoglycosides and substrates with amine-containing linkers. This optimized method will expand access to important non-participating C2-azido protecting groups and other azido sugar derivatives

    Cell-Surface Glyco-Engineering by Exogenous Enzymatic Transfer Using a Bifunctional CMP-Neu5Ac Derivative

    No full text
    Cell-surface engineering strategies that permit long-lived display of well-defined, functionally active molecules are highly attractive for eliciting desired cellular responses and for understanding biological processes. Current methodologies for the exogenous introduction of synthetic biomolecules often result in short-lived presentations, or require genetic manipulation to facilitate membrane attachment. Herein, we report a cell-surface engineering strategy that is based on the use of a CMP-Neu5Ac derivative that is modified at C-5 by a bifunctional entity composed of a complex synthetic heparan sulfate (HS) oligosaccharide and biotin. It is shown that recombinant ST6GAL1 can readily transfer the modified sialic acid to N-glycans of glycoprotein acceptors of living cells resulting in long-lived display. The HS oligosaccharide is functionally active, can restore protein binding, and allows activation of cell signaling events of HS-deficient cells. The cell-surface engineering methodology can easily be adapted to any cell type and is highly amenable to a wide range of complex biomolecules

    Numerical methods for kinetic equations Book of abstracts

    No full text
    SIGLEAvailable from TIB Hannover: F97B2212+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    • …
    corecore