471 research outputs found

    Global torques and stochasticity as the drivers of massive black hole pairing in the young Universe

    Full text link
    The forthcoming Laser Interferometer Space Antenna (LISA) will probe the population of coalescing massive black hole (MBH) binaries up to the onset of structure formation. Here we simulate the galactic-scale pairing of 106M\sim10^6 M_\odot MBHs in a typical, non-clumpy main-sequence galaxy embedded in a cosmological environment at z=76z = 7-6. In order to increase our statistical sample, we adopt a strategy that allows us to follow the evolution of six secondary MBHs concomitantly. We find that the magnitude of the dynamical-friction induced torques is significantly smaller than that of the large-scale, stochastic gravitational torques arising from the perturbed and morphologically evolving galactic disc, suggesting that the standard dynamical friction treatment is inadequate for realistic galaxies at high redshift. The dynamical evolution of MBHs is very stochastic, and a variation in the initial orbital phase can lead to a drastically different time-scale for the inspiral. Most remarkably, the development of a galactic bar in the host system either significantly accelerates the inspiral by dragging a secondary MBH into the centre, or ultimately hinders the orbital decay by scattering the MBH in the galaxy outskirts. The latter occurs more rarely, suggesting that galactic bars overall promote MBH inspiral and binary coalescence. The orbital decay time can be an order of magnitude shorter than what would be predicted relying on dynamical friction alone. The stochasticity, and the important role of global torques, have crucial implications for the rates of MBH coalescences in the early Universe: both have to be accounted for when making predictions for the upcoming LISA observatory.Comment: Accepted for publication in MNRAS; 15 pages, 10 Figures, 2 Table

    The birth of a supermassive black hole binary

    Full text link
    We study the dynamical evolution of supermassive black holes, in the late stage of galaxy mergers, from kpc to pc scales. In particular, we capture the formation of the binary, a necessary step before the final coalescence, and trace back the main processes causing the decay of the orbit. We use hydrodynamical simulations of galaxy mergers with different resolutions, from 20pc20\,\rm pc down to 1pc1\,\rm pc, in order to study the effects of the resolution on our results, remove numerical effects, and assess that resolving the influence radius of the orbiting black hole is a minimum condition to fully capture the formation of the binary. Our simulations include the relevant physical processes, namely star formation, supernova feedback, accretion onto the black holes and the ensuing feedback. We find that, in these mergers, dynamical friction from the smooth stellar component of the nucleus is the main process that drives black holes from kpc to pc scales. Gas does not play a crucial role and even clumps do not induce scattering or perturb the orbits. We compare the time needed for the formation of the binary to analytical predictions and suggest how to apply such analytical formalism to obtain estimates of binary formation times in lower resolution simulations.Comment: 12 pages, 12 Figures, submitted to MNRA

    Black hole accretion versus star formation rate: theory confronts observations

    Full text link
    We use a suite of hydrodynamical simulations of galaxy mergers to compare star formation rate (SFR) and black hole accretion rate (BHAR) for galaxies before the interaction ('stochastic' phase), during the `merger' proper, lasting ~0.2-0.3 Gyr, and in the `remnant' phase. We calculate the bi-variate distribution of SFR and BHAR and define the regions in the SFR-BHAR plane that the three phases occupy. No strong correlation between BHAR and galaxy-wide SFR is found. A possible exception are galaxies with the highest SFR and the highest BHAR. We also bin the data in the same way used in several observational studies, by either measuring the mean SFR for AGN in different luminosity bins, or the mean BHAR for galaxies in bins of SFR. We find that the apparent contradiction or SFR versus BHAR for observed samples of AGN and star forming galaxies is actually caused by binning effects. The two types of samples use different projections of the full bi-variate distribution, and the full information would lead to unambiguous interpretation. We also find that a galaxy can be classified as AGN-dominated up to 1.5 Gyr after the merger-driven starburst took place. Our study is consistent with the suggestion that most low-luminosity AGN hosts do not show morphological disturbances.Comment: MNRAS Letters, in pres

    Supermassive black hole pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth

    Full text link
    Massive gas-rich galaxy discs at z13z \sim 1-3 host massive star-forming clumps with typical baryonic masses in the range 10710810^7-10^8~M_{\odot} which can affect the orbital decay and concurrent growth of supermassive black hole (BH) pairs. Using a set of high-resolution simulations of isolated clumpy galaxies hosting a pair of unequal-mass BHs, we study the interaction between massive clumps and a BH pair at kpc scales, during the early phase of the orbital decay. We find that both the interaction with massive clumps and the heating of the cold gas layer of the disc by BH feedback tend to delay significantly the orbital decay of the secondary, which in many cases is ejected and then hovers for a whole Gyr around a separation of 1--2 kpc. In the envelope, dynamical friction is weak and there is no contribution of disc torques: these lead to the fastest decay once the orbit of the secondary BH has circularised in the disc midplane. In runs with larger eccentricities the delay is stronger, although there are some exceptions. We also show that, even in discs with very sporadic transient clump formation, a strong spiral pattern affects the decay time-scale for BHs on eccentric orbits. We conclude that, contrary to previous belief, a gas-rich background is not necessarily conducive to a fast BH decay and binary formation, which prompts more extensive investigations aimed at calibrating event-rate forecasts for ongoing and future gravitational-wave searches, such as with Pulsar Timing Arrays and the future evolved Laser Interferometer Space Antenna.Comment: Accepted by MNRA

    A definitive merger-AGN connection at z~0 with CFIS: mergers have an excess of AGN and AGN hosts are more frequently disturbed

    Full text link
    The question of whether galaxy mergers are linked to the triggering of active galactic nuclei (AGN) continues to be a topic of considerable debate. The issue can be broken down into two distinct questions: 1) Can galaxy mergers trigger AGN? 2) Are galaxy mergers the dominant AGN triggering mechanism? A complete picture of the AGN-merger connection requires that both of these questions are addressed with the same dataset. In previous work, we have shown that galaxy mergers selected from the Sloan Digital Sky Survey (SDSS) show an excess of both optically-selected, and mid-IR colour-selected AGN, demonstrating that the answer to the first of the above questions is affirmative. Here, we use the same optical and mid-IR AGN selection to address the second question, by quantifying the frequency of morphological disturbances in low surface brightness r-band images from the Canada France Imaging Survey (CFIS). Only ~30 per cent of optical AGN host galaxies are morphologically disturbed, indicating that recent interactions are not the dominant trigger. However, almost 60 per cent of mid-IR AGN hosts show signs of visual disturbance, indicating that interactions play a more significant role in nuclear feeding. Both mid-IR and optically selected AGN have interacting fractions that are a factor of two greater than a mass and redshift matched non-AGN control sample, an excess that increases with both AGN luminosity and host galaxy stellar mass.Comment: Accepted for publication in MNRA

    Multiple regimes and coalescence timescales for massive black hole pairs ; the critical role of galaxy formation physics

    Get PDF
    We discuss the latest results of numerical simulations following the orbital decay of massive black hole pairs in galaxy mergers. We highlight important differences between gas-poor and gas-rich hosts, and between orbital evolution taking place at high redshift as opposed to low redshift. Two effects have a huge impact and are rather novel in the context of massive black hole binaries. The first is the increase in characteristic density of galactic nuclei of merger remnants as galaxies are more compact at high redshift due to the way dark halo collapse depends on redshift. This leads naturally to hardening timescales due to 3-body encounters that should decrease by two orders of magnitude up to z=4z=4. It explains naturally the short binary coalescence timescale, 10\sim 10 Myr, found in novel cosmological simulations that follow binary evolution from galactic to milliparsec scales. The second one is the inhomogeneity of the interstellar medium in massive gas-rich disks at high redshift. In the latter star forming clumps 1-2 orders of magnitude more massive than local Giant Molecular Clouds (GMCs) can scatter massive black holes out of the disk plane via gravitational perturbations and direct encounters. This renders the character of orbital decay inherently stochastic, often increasing orbital decay timescales by as much as a Gyr. At low redshift a similar regime is present at scales of 1101-10 pc inside Circumnuclear Gas Disks (CNDs). In CNDs only massive black holes with masses below 107M10^7 M_{\odot} can be significantly perturbed. They decay to sub-pc separations in up to 108\sim 10^8 yr rather than the in just a few million years as in a smooth CND. Finally implications for building robust forecasts of LISA event rates are discussedComment: 13 pages, 3 Figures, Invited Paper to appear in the Proceedings of the 11th International LISA Symposium, IOP Journal of Physics: Conference Serie

    The role of bars on the dynamical-friction driven inspiral of massive perturbers

    Get PDF
    In this paper, we explore the impact of a galactic bar on the inspiral time-scale of a massive perturber (MP) within a Milky Way-like galaxy. We integrate the orbit of MPs in a multi-component galaxy model via a semi-analytical approach including an accurate treatment for dynamical friction generalized to rotationally supported backgrounds. We compare the MP evolution in a galaxy featuring a Milky Way-like rotating bar to the evolution within an analogous axisymmetric galaxy without the bar. We find that the bar presence may significantly affect the inspiral, sometimes making it shorter by a factor of a few, sometimes hindering it for a Hubble time, implying that dynamical friction alone is greatly insufficient to fully characterize the orbital decay. The effect of the bar is more prominent for initially in-plane, prograde MPs, especially those crossing the bar co-rotation radius or outer Lindblad resonance. In the barred galaxy, we find the sinking of the most massive MPs (>~10^7.5 Msun) approaching the galaxy from large separations (>~8 kpc) to be most efficiently hampered. Neglecting the effect of global torques associated to the non-symmetric mass distribution is thus not advisable even within our idealized, smooth Milky Way model, and it should be avoided when dealing with more complex and realistic galaxy systems. This has important implications for the orbital decay of massive black holes in late-type spirals, the natural candidate sources to be detected with the Laser Interferometer Space Antenna (LISA).Comment: 16 pages, 12 figures, 2 tables. Submitted to MNRAS. Comments welcome
    corecore