659 research outputs found

    Impurity and boundary effects in one and two-dimensional inhomogeneous Heisenberg antiferromagnets

    Full text link
    We calculate the ground-state energy of one and two-dimensional spatially inhomogeneous antiferromagnetic Heisenberg models for spins 1/2, 1, 3/2 and 2. Our calculations become possible as a consequence of the recent formulation of density-functional theory for Heisenberg models. The method is similar to spin-density-functional theory, but employs a local-density-type approximation designed specifically for the Heisenberg model, allowing us to explore parameter regimes that are hard to access by traditional methods, and to consider complications that are important specifically for nanomagnetic devices, such as the effects of impurities, finite-size, and boundary geometry, in chains, ladders, and higher-dimensional systems.Comment: 4 pages, 4 figures, accepted by Phys. Rev.

    How tight is the Lieb-Oxford bound?

    Full text link
    Density-functional theory requires ever better exchange-correlation (xc) functionals for the ever more precise description of many-body effects on electronic structure. Universal constraints on the xc energy are important ingredients in the construction of improved functionals. Here we investigate one such universal property of xc functionals: the Lieb-Oxford lower bound on the exchange-correlation energy, Exc[n]Cd3rn4/3E_{xc}[n] \ge -C \int d^3r n^{4/3}, where CCLO=1.68C\leq C_{LO}=1.68. To this end, we perform a survey of available exact or near-exact data on xc energies of atoms, ions, molecules, solids, and some model Hamiltonians (the electron liquid, Hooke's atom and the Hubbard model). All physically realistic density distributions investigated are consistent with the tighter limit C1C \leq 1. For large classes of systems one can obtain class-specific (but not fully universal) similar bounds. The Lieb-Oxford bound with CLO=1.68C_{LO}=1.68 is a key ingredient in the construction of modern xc functionals, and a substantial change in the prefactor CC will have consequences for the performance of these functionals.Comment: 10 pages, 3 figure

    Density-functional calculation of ionization energies of current-carrying atomic states

    Full text link
    Current-density-functional theory is used to calculate ionization energies of current-carrying atomic states. A perturbative approximation to full current-density-functional theory is implemented for the first time, and found to be numerically feasible. Different parametrizations for the current-dependence of the density functional are critically compared. Orbital currents in open-shell atoms turn out to produce a small shift in the ionization energies. We find that modern density functionals have reached an accuracy at which small current-related terms appearing in open-shell configurations are not negligible anymore compared to the remaining difference to experiment.Comment: 7 pages, 2 tables, accepted by Phys. Rev.

    Non-empirical hyper-generalized-gradient functionals constructed from the Lieb-Oxford bound

    Full text link
    A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an alternative point of view on popular hybrid functionals, providing a rationale for why they work and how they can be constructed. A similar representation of the exact correlation functional allows to construct fully non-empirical hyper-generalized-gradient approximations (HGGAs), radically departing from established paradigms of functional construction. Numerical tests of these HGGAs for atomic and molecular correlation energies and molecular atomization energies show that even simple HGGAs match or outperform state-of-the-art correlation functionals currently used in solid-state physics and quantum chemistry.Comment: v2: Major revison. Added information on relation to the gradient expansion and to local hybrids, improved discussion of size consistency and of performance relative to other functional

    Hydrogen effect on fatigue life of a pipe steel

    Get PDF
    Transport by pipe is the means more used, at the present time, to convey energies of their point of extraction until their field sites final. To limit any risk of explosion or of escape and thus to limit the geological problems of pollution and the human risks, it is necessary to be able to know the mechanical properties of the steels used in the manufacture of these pipes. With the reduction in oil stocks, it is necessary to find a new energy. Hydrogen is this new energy vector, it thus will also be necessary to be able to transport it. This study makes it possible to emphasize the assignment of the lifespan of hydrogen on a pipeline steel normally used in the transport of gas. The fatigue tests in 3 points bending are carried out on samples not standards because of dimensions of the tube of origin

    Nonuniqueness and derivative discontinuities in density-functional theories for current-carrying and superconducting systems

    Get PDF
    Current-carrying and superconducting systems can be treated within density-functional theory if suitable additional density variables (the current density and the superconducting order parameter, respectively) are included in the density-functional formalism. Here we show that the corresponding conjugate potentials (vector and pair potentials, respectively) are {\it not} uniquely determined by the densities. The Hohenberg-Kohn theorem of these generalized density-functional theories is thus weaker than the original one. We give explicit examples and explore some consequences.Comment: revised version (typos corrected, some discussion added) to appear in Phys. Rev.

    BCS and generalized BCS superconductivity in relativistic quantum field theory. I. formulation

    Full text link
    We investigate the BCS and generalized BCS theories in the relativistic quantum field theory. We select the gauge freedom as U(1), and introduce a BCS-type effective attractive interaction. After introducing the Gor'kov formalism and performing the group theoretical consideration of the mean fields, we solve the relativistic Gor'kov equation and obtain the Green's functions in analytical forms. We obtain various types of gap equations.Comment: 31 page

    Spin gaps and spin-flip energies in density-functional theory

    Full text link
    Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is know about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single particle calculations tend to overestimate spin gaps while they underestimate charge gaps.Comment: 11 pages, 1 figure, 3 table
    corecore