126 research outputs found

    Decision support framework for supply chain planning with flexible demand

    Get PDF
    The most challenging issue of today’s production management is certainly to manage networked organisations under an uncertain demand so that to provide a good service to the customer at low cost. In this article, a model of the decision making parameters involved in this management process is suggested, on the base of case studies. A mixed integer linear planning model embedded in a framework simulating a rolling horizon planning process is described on the base of this analysis. The model takes into account the capabilities of reaction of the planned system and of its environment (suppliers, subcontractors and customers), as well as the corresponding costs. The suggested simulation framework may assist the decision maker for coping with an uncertain or flexible demand, using various planning strategies. Some possible applications of this simulation framework are given in order to illustrate how it can help to solve various types of practical planning problems

    Enzymatic processing of protein-based fibers

    Get PDF
    Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma.This work was financially supported by the National Natural Science Foundation of China (21274055,51373071, 31201134 and 31470509), the Program for New Century Excellent Talents in University (NCET-12-0883), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135), the Jiangsu Provincial Natural Science Foundation of China (BK2012112), and the Fundamental Research Funds for the Central Universities (JUSRP51312B)

    Effect of autoclave sterilisation and heat activated sodium hypochlorite irrigation on the performance of nickel-titanium rotary files against cyclic fatigue

    Get PDF
    The present study aims to assess the impact of heat-activated sodium hypochlorite (NaOCl) and/or autoclave sterilisation on the cyclic fatigue resistance (CFR) of heat-treated nickel-titanium rotary files used in root canal treatment. The CFR of One Curve (OC) files was evaluated under the following conditions: as received (Group 1; control), immersion in NaOCl at 23 ± 1ÂșC (Group 2), immersion in NaOCl at 60 ± 1ÂșC (Group 3), autoclave sterilisation at 135 1ÂșC (Group 4), combined treatment of autoclave sterilisation and immersion in NaOCl at 23 ± 1ÂșC (Group 5), and combined treatment of autoclave sterilisation and immersion in NaOCl at 60 ± 1ÂșC (Group 6). A simulated root canal in a zirconia block was utilised to test the performance of the files. All the types of treatments resulted in significant reductions in fracture resistance of the OC files. Immersion of the files in NaOCl at 23ÂșC revealed the smallest reduction, while combined treatment of autoclaving and immersion in NaOCl at 60ÂșC caused the greatest reduction. Autoclave sterilisation or exposure of OC files to 2.5% NaOCl adversely affect the cyclic fatigue life and increasing solution temperature or combined treatment caused additionally significant reduction in CFR

    Effect of sonic versus ultrasonic activation on aqueous solution penetration in root canal dentin.

    Full text link

    Physical Layer Secrecy in Large Multihop Wireless Networks

    No full text

    Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics - Statistical mechanical theory vs molecular field approach

    No full text
    PubMed ID: 23534657The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio. © 2013 American Institute of Physics
    • 

    corecore