470 research outputs found

    HerzfrequenzvariabilitÀt in der Postmenopause

    Get PDF
    Zusammenfassung: Autonomes Nervensystem und HerzfrequenzvariabilitĂ€t: Sowohl eine Dysregulation des autonomen Nervensystems (ANS) als auch die Menopause sind mit einem erhöhten kardiovaskulĂ€ren Risiko verbunden. Das kardiale ANS kann anhand der HerzfrequenzvariabilitĂ€t (HRV) beurteilt und in Frequenzspektren aufgespalten werden, die sich dem Parasympathikus- und/oder Sympathikuseinfluss zuordnen lassen. Einfluss der endokrinen Lebensphasen: Bereits wĂ€hrend des Menstruationszyklus zeigt sich eine zyklusabhĂ€ngige Fluktuation der HRV. Mit dem menopausalen Östrogenabfall ist ein Anstieg des Sympathikotonus mit HRV-Reduktion verbunden, was mit einem erhöhten kardiovaskulĂ€ren Risiko einhergeht. Das mit menopausalen Hitzewallungen verbundene erhöhte kardiovaskulĂ€re Erkrankungsrisiko ist möglicherweise ebenso auf eine Sympathikusaktivierung zurĂŒckzufĂŒhren. Therapie: Eine Hormonersatztherapie vermag eventuell eine Wiederherstellung der autonomen Balance herbeizufĂŒhre

    CENTIMETER COSMO-SKYMED RANGE MEASUREMENTS FOR MONITORING GROUND DISPLACEMENTS

    Get PDF
    The SAR (Synthetic Aperture Radar) imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR), based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano – Northern Italy), where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS), taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one) stable PS's are available around the monitored area, in order to correct residual biases, likely due to orbit errors

    Impact of Sleeve Gastrectomy on Weight Loss, Glucose Homeostasis, and Comorbidities in Severely Obese Type 2 Diabetic Subjects

    Get PDF
    This study was undertaken to assess medium-term effects of laparoscopic sleeve gastrectomy (LSG) on body weight and glucose homeostasis in severely obese type 2 diabetic (T2DM) subjects. Twenty-five obese T2DM subjects (10 M/15 F, age 45 ± 9 years, BMI 48 ± 8 kg/m2, M ± SD) underwent evaluation of anthropometric/clinical parameters and glucose homeostasis before, 3 and 9–15 months after LSG. Mean BMI decreased from 48 ± 8 kg/m2 to 40 ± 9 kg/m2 (P < .001) at 3 months and 34 ± 6 kg/m2 (P < .001) at 9–15 months after surgery. Remission of T2DM (fasting plasma glucose < 126 mg/dL and HbA1c < 6.5% in the absence of hypoglycemic treatment) occurred in all patients but one. There was a remarkable reduction in the percentage of patients requiring antihypertensive and hypolipidemic drugs. Our study shows that LSG is effective in producing a significant and sustained weight loss and improving glucose homeostasis in severely obese T2DM patients

    Dietary fat differentially modulate the mRNA expression levels of oxidative mitochondrial genes in skeletal muscle of healthy subjects.

    Get PDF
    Background and aims: Different types of dietary fats exert differential effects on glucose and lipid metabolism. Our aim was to evaluate the impact of different dietary fats on the expression of skeletal muscle genes regulating mitochondrial replication and function in healthy subjects. Methods and results: Ten healthy subjects (age 29±3 years; BMI 25.0±3kg/m2) received in a random order a test meal with the same energy content but different composition in macronutrients and quality of fat: Mediterranean (MED) meal, SAFA meal (Lipid 66%, saturated 36%) and MUFA meal (Lipid 63%, monounsaturated 37%). At fast and after 180min, a fine needle aspiration was performed from the vastus lateralis for determination of mitochondrial gene expression by quantitative PCR. No difference in glucose and triglyceride response was observed between the three meals, while NEFA levels were significantly higher following fat-rich meals compared to MED meal (p<0.002-0.0001). MED meal was associated with an increased expression, albeit not statistically significant, of some genes regulating both replication and function. Following MUFA meal, a significant increase in the expression of PGC1ÎČ (p=0.02) and a reduction in the transcription factor PPARÎŽ (p=0.006) occurred with no change in the expression of COX and GLUT4 genes. In contrast, SAFA meal was associated with a marked reduction in the expression of COX (p<0.001) PFK (p<0.003), LPL (p=0.002) and GLUT4 (p=0.009) genes. Conclusion: Dietary fats differentially modulate gene transcriptional profile since saturated, but not monounsaturated fat, downregulate the expression of genes regulating muscle glucose transport and oxidation

    Accelerated and Scalable C(sp<sup>3</sup>)-H Amination via Decatungstate Photocatalysis Using a Flow Photoreactor Equipped with High-Intensity LEDs

    Get PDF
    [Image: see text] Carbon–nitrogen bonds are ubiquitous in biologically active compounds, prompting synthetic chemists to design various methodologies for their preparation. Arguably, the ideal synthetic approach is to be able to directly convert omnipresent C–H bonds in organic molecules, enabling even late-stage functionalization of complex organic scaffolds. While this approach has been thoroughly investigated for C(sp(2))–H bonds, only few examples have been reported for the direct amination of aliphatic C(sp(3))–H bonds. Herein, we report the use of a newly developed flow photoreactor equipped with high intensity chip-on-board LED technology (144 W optical power) to trigger the regioselective and scalable C(sp(3))–H amination via decatungstate photocatalysis. This high-intensity reactor platform enables simultaneously fast results gathering and scalability in a single device, thus bridging the gap between academic discovery (mmol scale) and industrial production (>2 kg/day productivity). The photocatalytic transformation is amenable to the conversion of both activated and nonactivated hydrocarbons, leading to protected hydrazine products by reaction with azodicarboxylates. We further validated the robustness of our manifold by designing telescoped flow approaches for the synthesis of pyrazoles, phthalazinones and free amines

    Grape pomace polyphenols improve insulin response to a standard meal in healthy individuals: A pilot study

    Get PDF
    Dietary polyphenols have beneficial effects on glucose/lipid metabolism in subjects at high risk to develop type 2 diabetes; however, the underlying mechanisms are not clear. We aimed to evaluate: 1) the acute effects of the consumption of a drink rich in polyphenols from red grape pomace (RGPD) on glucose/insulin and triglyceride responses to a standard meal in healthy individuals, and, 2) the relationship between plasma levels of phenolic metabolites and metabolic parameters

    Zno thin films growth optimization for piezoelectric application

    Get PDF
    The piezoelectric response of ZnO thin films in heterostructure-based devices is strictly related to their structure and morphology. We optimize the fabrication of piezoelectric ZnO to reduce its surface roughness, improving the crystalline quality, taking into consideration the role of the metal electrode underneath. The role of thermal treatments, as well as sputtering gas composition, is investigated by means of atomic force microscopy and x-ray diffraction. The results show an optimal reduction in surface roughness and at the same time a good crystalline quality when 75% O2 is introduced in the sputtering gas and deposition is performed between room temperature and 573 K. Subsequent annealing at 773 K further improves the film quality. The introduction of Ti or Pt as bottom electrode maintains a good surface and crystalline quality. By means of piezoelectric force microscope, we prove a piezoelectric response of the film in accordance with the literature, in spite of the low ZnO thickness and the reduced grain size, with a unipolar orientation and homogenous displacement when deposited on Ti electrode
    • 

    corecore