147 research outputs found

    Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia

    Get PDF
    Abstract: In tropical forests, trees compete not only with other trees, but also with lianas, which may limit tree growth and regeneration. Liana effects may depend on the availability of above- and below-ground resources and differ between tree species. We conducted a shade house experiment to test the effect of light (4% and 35% full sun, using neutral-density screen) on the competitive interactions between seedlings of one liana (Byttneria grandifolia) and three tree species (two shade-tolerant trees, Litsea dilleniifolia and Pometia tomentosa, and one light-demanding tree, Bauhinia variegata) and to evaluate the contribution of both above- and below-ground competition. Trees were grown in four competition treatments with the liana: no competition, root competition, shoot competition and root and shoot competition. Light strongly affected leaf photosynthetic capacity (light-saturated photosynthetic rate, Pn), growth and most morphological traits of the tree species. Liana-induced competition resulted in reduced Pn, total leaf areas and relative growth rates (RGR) of the three tree species. The relative importance of above- and below-ground competition differed between the two light levels. In low light, RGR of the three tree species was reduced more strongly by shoot competition (23.1¿28.7% reduction) than by root competition (5.3¿26.4%). In high light, in contrast, root competition rather than shoot competition greatly reduced RGR. Liana competition affected most morphological traits (except for specific leaf area and leaf area ratio of Litsea and Pometia), and differentially altered patterns of biomass allocation in the tree seedlings. These findings suggest that competition from liana seedlings can greatly suppress growth in tree seedlings of both light-demanding and shade-tolerant species and those effects differ with competition type (below- and above-ground) and with irradianc

    Responses of two field-grown coffee species to drought and re-hydration

    Get PDF
    The gas exchange, parameters of chlorophyll fluorescence, contents of pigments, and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), as well as lipid peroxidation were investigated in two field-grown coffee species, Coffea arabica and C. liberica, exposed to drought and re-hydration. Drought caused a more pronounced inhibition of net photosynthetic rate in C. liberica compared to C. arabica. The de-epoxidation of xanthophyll cycle pigments at midday estimated by leaf reflectance was much higher in C. arabica than in C. liberica, but no significant change was found in response to drought. Under moderate drought, the activities of SOD and APX increased significantly only in C. arabica. The maximum photochemical efficiency of photosystem 2, PS2 (Fv/Fm) at predawn did not change and there was no lipid peroxidation during this time. Under severe drought Fv/Fm decreased and initial fluorescence (F0) increased for both species, and SOD activity increased, APX activity remained relatively high, and malondialdehyde (MDA) accumulated in C. arabica, while APX decreased in C. liberica. The photosynthetic apparatus of C. arabica was completely recovered after 5 d of re-irrigation as indicated by the restoration of Fv/Fm to the control values. A lack of recovery upon rewatering of C. liberica indicated irreversible damage to PS2. Hence compared to C. liberica, C. arabica possesses a higher desiccation-induced antioxidative protection and higher portion of the total pigment pool used in photoprotection, which might aid alleviating photoinhibitory damage during desiccation and photosynthesis recovery when favourable conditions are restore

    Modified Norris–Landzberg Model and Optimum Design of Temperature Cycling ALT

    No full text
    Accelerated life testing (ALT) is an effective way to assess the lifetime of a product. Due to the complex nature of its testing profile, it is difficult to carry out temperature cycling ALT. This paper establishes a modified Norris–Landzberg model as acceleration model, and proposes the optimum design method of temperature cycling ALT. First, the FEA method is used to study the influence of temperature cycling profile parameters on the thermal fatigue life of 63Sn–37Pb solder joints. Then, a modified Norris–Landzberg model is proposed by introducing ramp time and dwell time with an added weight value. Finally, the temperature cycling ALT is regarded as a special multi-stress ALT to study its optimum design method. The uniform design theory is used to determine the combined mode. The optimum model is established with the objective of minimizing the asymptotic variance of the estimation of median lifetime under normal use conditions, and the simulation example shows the workability of the proposed method

    Localized Random Lasing Modes and a New Path for Observing Localization

    Full text link
    We demonstrate that a knowledge of the density-of-states and the eigenstates of a random system without gain, in conjunction with the frequency profile of the gain, can accurately predict the mode that will lase first. Its critical pumping rate can be also obtained. It is found that the shape of the wavefunction of the random system remains unchanged as gain is introduced. These results were obtained by the time-independent transfer matrix method and finite-difference-time-domain (FDTD) methods. They can be also analytically understood by generalizing the semi-classical Lamb theory of lasing in random systems. These findings provide a new path for observing the localization of light, such as looking for mobility edge and studying the localized states. %inside the random systems..Comment: Sent to PRL. 3 figure

    Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium

    Full text link
    In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan, et al. (J. Opt. Soc. Am. B {\bf 10}, 391 (1993)). A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with travelling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases that the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems (Asatryan, et al., Phys. Rev. E {\bf 67}, 036605 (2003).)Comment: 8 pages 9 figure
    corecore