88 research outputs found

    The evolutionary history of 2,658 cancers

    Get PDF
    Cancer develops through a process of somatic evolution(1,2). Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes(3). Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)(4), we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma and isochromosome 17q in medulloblastoma. The mutational spectrum changes significantly throughout tumour evolution in 40% of samples. A nearly fourfold diversification of driver genes and increased genomic instability are features of later stages. Copy number alterations often occur in mitotic crises, and lead to simultaneous gains of chromosomal segments. Timing analyses suggest that driver mutations often precede diagnosis by many years, if not decades. Together, these results determine the evolutionary trajectories of cancer, and highlight opportunities for early cancer detection.Peer reviewe

    Anti-sulfatide antibody-related Guillain–Barré syndrome presenting with overlapping syndromes or severe pyramidal tract damage: a case report and literature review

    Get PDF
    IntroductionAnti-sulfatide antibodies are key biomarkers for the diagnosis of Guillain–Barré syndrome (GBS). However, case reports on anti-sulfatide antibody-related GBS are rare, particularly for atypical cases.Case description, case 1A 63 years-old man presented with limb numbness and diplopia persisting for 2 weeks, with marked deterioration over the previous 4 days. His medical history included cerebral infarction, diabetes, and coronary atherosclerotic cardiomyopathy. Physical examination revealed limited movement in his left eye and diminished sensation in his extremities. Initial treatments included antiplatelet agents, cholesterol-lowering drugs, hypoglycemic agents, and medications to improve cerebral circulation. Despite this, his condition worsened, resulting in bilateral facial paralysis, delirium, ataxia, and decreased lower limb muscle strength. Treatment with intravenous high-dose immunoglobulin and dexamethasone resulted in gradual improvement. A 1 month follow-up revealed significant neurological sequelae.Case description, case 2A 53 years-old woman was admitted for adenomyosis and subsequently experienced sudden limb weakness, numbness, and pain that progressively worsened, presenting with diminished sensation and muscle strength in all limbs. High-dose intravenous immunoglobulin, vitamin B1, and mecobalamin were administered. At the 1 month follow-up, the patient still experienced limb numbness and difficulty walking. In both patients, albuminocytologic dissociation was found on cerebrospinal fluid (CSF) analysis, positive anti-sulfatide antibodies were detected in the CSF, and electromyography indicated peripheral nerve damage.ConclusionAnti-sulfatide antibody-related GBS can present with Miller–Fisher syndrome, brainstem encephalitis, or a combination of the two, along with severe pyramidal tract damage and residual neurological sequelae, thereby expanding the clinical profile of this GBS subtype. Anti-sulfatide antibodies are a crucial diagnostic biomarker. Further exploration of the pathophysiological mechanisms is necessary for precise treatment and improved prognosis

    TP53 Gain-of-Function Mutation Modulates the Immunosuppressive Microenvironment in Non-HPV-Associated Oral Squamous Cell Carcinoma

    Get PDF
    BACKGROUND: TP53, the most mutated gene in solid cancers, has a profound impact on most hallmarks of cancer. Somatic TP53 mutations occur in high frequencies in head and neck cancers, including oral squamous cell carcinoma (OSCC). Our study aims to understand the role of TP53 gain-of-function mutation in modulating the tumor immune microenvironment (TIME) in OSCC. METHODS: Short hairpin RNA knockdown of mutant p53R172H in syngeneic oral tumors demonstrated changes in tumor growth between immunocompetent and immunodeficient mice. HTG EdgeSeq targeted messenger RNA sequencing was used to analyze cytokine and immune cell markers in tumors with inactivated mutant p53R172H. Flow cytometry and multiplex immunofluorescence (mIF) confirmed the role of mutant p53R172H in the TIME. The gene expression of patients with OSCC was analyzed by CIBERSORT and mIF was used to validate the immune landscape at the protein level. RESULTS: Mutant p53R172H contributes to a cytokine transcriptome network that inhibits the infiltration of cytotoxic CD8+ T cells and promotes intratumoral recruitment of regulatory T cells and M2 macrophages. Moreover, p53R172H also regulates the spatial distribution of immunocyte populations, and their distribution between central and peripheral intratumoral locations. Interestingly, p53R172H-mutated tumors are infiltrated with CD8+ and CD4+ T cells expressing programmed cell death protein 1, and these tumors responded to immune checkpoint inhibitor and stimulator of interferon gene 1 agonist therapy. CIBERSORT analysis of human OSCC samples revealed associations between immune cell populations and the TP53R175H mutation, which paralleled the findings from our syngeneic mouse tumor model. CONCLUSIONS: These findings demonstrate that syngeneic tumors bearing the TP53R172H gain-of-function mutation modulate the TIME to evade tumor immunity, leading to tumor progression and decreased survival

    Anomalous High-Energy Waterfall-Like Electronic Structure in 5 \u3cem\u3ed\u3c/em\u3e Transition Metal Oxide Sr\u3csub\u3e2\u3c/sub\u3eIrO\u3csub\u3e4\u3c/sub\u3e with a Strong Spin-Orbit Coupling

    Get PDF
    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations

    CRISPR-Cas9-Based Functional Interrogation of Unconventional Translatome Reveals Human Cancer Dependency on Cryptic Non-Canonical Open Reading Frames

    Get PDF
    Emerging evidence suggests that cryptic translation beyond the annotated translatome produces proteins with developmental or physiological functions. However, functions of cryptic non-canonical open reading frames (ORFs) in cancer remain largely unknown. To fill this gap and systematically identify colorectal cancer (CRC) dependency on non-canonical ORFs, we apply an integrative multiomic strategy, combining ribosome profiling and a CRISPR-Cas9 knockout screen with large-scale analysis of molecular and clinical data. Many such ORFs are upregulated in CRC compared to normal tissues and are associated with clinically relevant molecular subtypes. We confirm the in vivo tumor-promoting function of the microprotein SMIMP, encoded by a primate-specific, long noncoding RNA, the expression of which is associated with poor prognosis in CRC, is low in normal tissues and is specifically elevated in CRC and several other cancer types. Mechanistically, SMIMP interacts with the ATPase-forming domains of SMC1A, the core subunit of the cohesin complex, and facilitates SMC1A binding to cis-regulatory elements to promote epigenetic repression of the tumor-suppressive cell cycle regulators encoded by CDKN1A and CDKN2B. Thus, our study reveals a cryptic microprotein as an important component of cohesin-mediated gene regulation and suggests that the \u27dark\u27 proteome, encoded by cryptic non-canonical ORFs, may contain potential therapeutic or diagnostic targets

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    • …
    corecore