39 research outputs found

    Venue2Vec: An efficient embedding model for fine-grained user location prediction in geo-social networks

    Get PDF
    Geo-Social Networks (GSN) significantly improve location-aware capability of services by offering geo-located content based on the huge volumes of data generated in the GSN. The problem of user location prediction based on user-generated data in GSN has been extensively studied. However, existing studies are either concerning predicting users' next check-in location or predicting their future check-in location at a given time with coarse granularity. A unified model that can predict both scenarios with fine granularity is quite rare. Also, due to the heterogeneity of multiple factors associated with both locations and users, how to efficiently incorporate these information still remains challenging. Inspired by the recent success of word embedding in natural language processing, in this paper, we propose a novel embedding model called Venue2Vec which automatically incorporates temporal-spatial context, semantic information, and sequential relations for fine-grained user location prediction. Locations of the same type, and those that are geographically close or often visited successively by users will be situated closer within the embedding space. Based on our proposed Venue2Vec model, we design techniques that allow for predicting a user's next check-in location, and also their future check-in location at a given time. We conduct experiments on three real-world GSN datasets to verify the performance of the proposed model. Experimental results on both tasks show that Venue2Vec model outperforms several state-of-the-art models on various evaluation metrics. Furthermore, we show how the Venue2Vec model can be more time-efficient due to being parallelizable

    No Place to Hide: Dual Deep Interaction Channel Network for Fake News Detection based on Data Augmentation

    Full text link
    Online Social Network (OSN) has become a hotbed of fake news due to the low cost of information dissemination. Although the existing methods have made many attempts in news content and propagation structure, the detection of fake news is still facing two challenges: one is how to mine the unique key features and evolution patterns, and the other is how to tackle the problem of small samples to build the high-performance model. Different from popular methods which take full advantage of the propagation topology structure, in this paper, we propose a novel framework for fake news detection from perspectives of semantic, emotion and data enhancement, which excavates the emotional evolution patterns of news participants during the propagation process, and a dual deep interaction channel network of semantic and emotion is designed to obtain a more comprehensive and fine-grained news representation with the consideration of comments. Meanwhile, the framework introduces a data enhancement module to obtain more labeled data with high quality based on confidence which further improves the performance of the classification model. Experiments show that the proposed approach outperforms the state-of-the-art methods

    IoT Forensics: Amazon Echo as a Use Case

    Get PDF
    Internet of Things (IoT) are increasingly common in our society, and can be found in civilian settings as well as sensitive applications such as battlefields and national security. Given the potential of these devices to be targeted by attackers, they are a valuable source in digital forensic investigations. In addition, incriminating evidence may be stored on an IoT device (e.g. Amazon Echo in a home environment and Fitbit worn by the victim or an accused person). In comparison to IoT security and privacy literature, IoT forensics is relatively under-studied. IoT forensics is also challenging in practice, particularly due to the complexity, diversity, and heterogeneity of IoT devices and ecosystems. In this paper, we present an IoT based forensic model that supports the identification, acquisition, analysis, and presentation of potential artifacts of forensic interest from IoT devices and the underpinning infrastructure. Specifically, we use the popular Amazon Echo as a use case to demonstrate how our proposed model can be used to guide forensics analysis of IoT devices

    A Virtual Machine Consolidation Algorithm Based on Dynamic Load Mean and Multi-Objective Optimization in Cloud Computing

    No full text
    High energy consumption and low resource utilization have become increasingly prominent problems in cloud data centers. Virtual machine (VM) consolidation is the key technology to solve the problems. However, excessive VM consolidation may lead to service level agreement violations (SLAv). Most studies have focused on optimizing energy consumption and ignored other factors. An effective VM consolidation should comprehensively consider multiple factors, including the quality of service (QoS), energy consumption, resource utilization, migration overhead and network communication overhead, which is a multi-objective optimization problem. To solve the problems above, we propose a VM consolidation approach based on dynamic load mean and multi-objective optimization (DLMM-VMC), which aims to minimize power consumption, resources waste, migration overhead and network communication overhead while ensuring QoS. Fist, based on multi-dimensional resources consideration, the host load status is objectively evaluated by using the proposed host load detection algorithm based on the dynamic load mean to avoid an excessive VM consolidation. Then, the best solution is obtained based on the proposed multi-objective optimization model and optimized ant colony algorithm, so as to ensure the common interests of cloud service providers and users. Finally, the experimental results show that compared with the existing VM consolidation methods, our proposed algorithm has a significant improvement in the energy consumption, QoS, resources waste, SLAv, migration and network overhead

    Efficient online migration mechanism for memory write-intensive virtual machines

    No full text
    Abstract Online migration of virtual machines (VMs) is indispensable for system maintenance as it helps to achieve several resource management objectives such as load balancing, proactive fault tolerance, green operation, and resource management of data centers. The migration efficiency and reliability are two major challenges in the online migration of memory write-intensive VMs. For example, pre-copy migration transfers a large amount of data and takes a long time to migrate. This study proposes an efficient and reliable adaptive hybrid migration mechanism for memory write-intensive VMs. The mechanism optimizes the data transfer mode of the common migration method and improves the performance of conventional hybrid migration. First, the virtual machine (VM) memory data to be migrated are divided into dynamic and static data based on the bitmap marking method, and the migration efficiency is improved through parallel transmission based on different networks. Second, to accelerate the migration reliability, an iterative convergence factor is proposed to evaluate the current system load state and adaptively calculate the switching time of the migration mode for adaptive hybrid migration based on the convergence factor. Through adaptive hybrid migration can achieve migration completed successfully, shorten the post-copy migration duration, and minimize the impact on the performance of VMs. Finally, this paper implements the system prototype based on a kernel-based virtual machine (KVM), and experiments are performed using multiple memory write-intensive load VMs. The results show that the proposed migration algorithm can significantly improve migration performance and complete migration quickly to solve the pre-copy migration failure problem with a memory write-intensive load. Compared with the traditional hybrid migration with only one round of pre-copy, the proposed migration algorithm reduces the total migration time and transmits data by 23.2% and 26.7%, respectively

    A sub-surface eddy at inertial current layer in the Canada Basin, Arctic Ocean

    Get PDF
    An Arctic Ocean eddy in sub-surface layer is analyzed in this paper by use of temperature, salinity and current profiles data obtained at an ice camp in the Canada Basin during the second Chinese Arctic Expedition in summer of 2003. In the vertical temperature section, the eddy show itself as an isolated cold water block at depth of 60m with a minimum temperature of -1.5°C, about 0.5°C colder than the ambient water. Isopycnals in the eddy form a pattern of convex, which indicates the eddy is anticyclonic. Although maximum velocity near 0.4m s(-1) occurs in the current records observed synchronously, the current pattern is far away from a typical eddy. By further analysis, inertial frequency oscillations with amplitudes comparable with the eddy velocity are found in the sub-surface layer currents. After filter the inertial current and mean current, an axisymmetric current pattern of an eddy with maximum velocity radius of 5km is obtained. The analysis of the T-S characteristics of the eddy core water and its ambient waters supports the conclusion that the eddy was formed on the Chukchi Shelf and migrated northeastward into the northern Canada Basin
    corecore