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Fine-grained User Location Prediction in
Geo-Social Networks
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Abstract—Geo-Social networks (GSN) significantly improve
location-aware capability of services by offering geo-located
content based on the huge volumes of data generated in the GSN.
The problem of user location prediction based on user generated
data in GSN has been extensively studied. However, existing
studies are either concerning predicting users’ next check-in
location or predicting their future check-in location at a given
time with coarse granularity. An unified model that can predict
both scenarios with fine granularity is quite rare. Also, due to the
heterogeneity of multiple factors associated with both locations
and users, how to efficiently incorporate these information still
remains challenging.

Inspired by the recent success of word embedding in natural
language processing, in this work, we propose a novel embed-
ding model called Venue2Vec which automatically incorporates
temporal-spatial context, semantic information, and sequential
relations for fine-grained user location prediction. Locations of
the same type, and those that are geographically close or often
visited successively by users will be situated closer within the
embedding space. Based on our proposed Venue2Vec model, we
design techniques that allow for predicting a user’s next check-
in location, and also their future check-in location at a given
time. We conduct experiments on three real-world GSN datasets
to verify the performance of the proposed model. Experimental
results on both tasks show that Venue2Vec model outperforms
several state-of-the-art models on various evaluation metrics.
Furthermore, we show how the Venue2Vec model can be more
time efficient due to being parallelizable.

Keywords-Location prediction, location embedding, random
walk, language model, Geo-Social Networks.

I. INTRODUCTION

With the popularity of intelligent mobile terminals and
the progress of positioning technology, Geo-Social Net-
works (GSN), which can simultaneously provide location-
based service and online social networking service, have
become increasingly prevalent. Typical GSN platforms such
as Foursquare enable users to check-in anytime and anywhere.
Users are able to share check-in records with their friends,
which bridges users’ online behavior with offline mobility. As
it is rich in temporal, spatial and semantic information, the
huge volume of user check-in data generated in GSN makes
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it possible to explore intrinsic pattern of user mobility. Such
patterns could predict where a user would visit in the future
based on his/her historical check-in records. This application
scenario has value for both individuals and the wider society.
From the individual point of view, accurate location predic-
tion can provide users with informative personalized product
recommendation [1, 2]. From a societal view, such analysis
can accurately predict where traffic jams would happen, thus
can be helpful for urban intelligent transportation [3, 4].

The problem of user check-in location prediction has been
well-studied in recent years. From the perspective of predic-
tion timeliness, existing studies can be classified into two
categories, i.e. (1) Next check-in location prediction, which
focuses on predicting where a user will go next given his/her
historical check-in data; and (2) Anytime check-in location
prediction, which aims to predict where a user will be at a
given time far in the future. In practical application scenarios,
next check-in location prediction pays more attention to the
real-time nature of prediction results. Based on users’ recent
historical trajectories, it focuses on predicting their next visit
location in a timely manner before they make a request, thus
facilitating advertisers to launch mobile advertisements to tar-
geted users. In contrast, anytime check-in location prediction
focuses on mining users’ mobility pattern from their long-
term trajectories. It is able to predict where a user will be at
a certain time in the future based on his/her mobility pattern,
thus providing an effective means for authorities to monitor
users of interest.

Up to now, an unified model that can predict both scenarios
with fine granularity is quite rare. Most of the existing related
works such as [5-9] are concerning predicting users’ next
check-in location. For a few studies such as [10, 11] that
deal with predicting users’ check-in location far in the future,
they often ignore the integration effect of various factors
on user check-in behavior. Moreover, many existing studies
mainly conduct location prediction with a coarse granularity
concerning only location category or the single day as the time
measurement. For example, [12] can only predict what kind of
location (i.e. location category, not an exact location) a given
user will visit based on his/her historical check-in data, while
[5] only makes prediction where a user will go at a given day
(e.g. next Friday), rather than at a specific time. The practica-
bility of such coarse-grained location prediction is narrowed in
the increasingly fierce competition environment for location-
based services. For related works of both categories, they
usually exploit various features such as temporal cyclic effect,
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geographical influence, sequential relation and semantic infor-
mation to improve location prediction performance. Current
studies often incorporate different contextual factors through a
simple fusion strategy, i.e. modeling these factors as weighting
coefficients. Although neural network-based techniques like
[7] provide a new way of modeling different factors in an
unified manner, the task is still challenging that how to
effectively incorporate these features in the neural network
framework and meanwhile achieve an explainable model [13].

Unlike existing works, in this paper we aim at developing a
unified model incorporating temporal-spatial context, semantic
information, and sequential relation so as to realize both next
check-in location prediction and anytime check-in location
prediction. As we utilize the non-linear transformation to
exploit different features in an integrated manner, the inter-
pretability of the model can be naturally increased. Inspired
by the recent success of word embedding in natural language
processing and text mining, we propose a novel embedding
model called Venue2Vec for fine-grained user location predic-
tion in Geo-Social Networks. Locations of the same type and
those that are geographically near or often visited successively
by users will be closer in the embedding space. To fulfill
this task, we firstly sample the random walk sequences over
locations by using a mixture of location transition pattern
(i.e. sequential relation) and geographical influence (i.e. spatial
context). Then, a Skip-gram neural language model is applied
to learn the embedding of each location, after which the cor-
responding semantic information is concatenated to obtain the
final location vector. Thirdly, both the target user’s preferences
for his/her next visit and his/her preference at a given time
(i.e. temporal context) can be calculated based on his/her past
check-in records. Finally, the prediction result is produced
based on the similarity between user preference and location
vectors. Considering that users tend to visit geographically
near places, we further incorporate a distance factor (i.e. spatial
context) using kernel density estimation (KDE) in the final
result. Figure 1 illustrates the graphical architecture of the
proposed Venue2Vec model.

In this work, we train the proposed Venue2Vec model
using three real-world GSN datasets. We visualize the
obtained location embeddings and observe the clustering
phenomenon, which indicates that the fusion of multiple
factors improve the interpretability of the model. The main
contributions of this paper are summarized as follows:

o A novel embedding model named Venue2Vec is pro-
posed, which naturally encodes temporal-spatial context,
semantic information, and sequential relation in an u-
nified manner for fine-grained user location prediction.
To our knowledge, this is the first work that develops a
unified model for user next check-in location prediction
and anytime check-in location prediction at the same
time.

o Based on the random walk sampling process, we manage
to transfer the popular word embedding technique to a
new application for learning location embeddings.

o Extensive experiments have been conducted to evaluate
the effectiveness of the Venue2Vec model. With regard to
user next check-in location prediction task, the proposed

Prediction Result with Distance Factor

Preference Calculatio

-
1
1
1
!

Next Visit

'Location to Vector

Semantic
Information

Neural Language
Model

+

Corpus Sampling

Transition Geographical

i Pattern Influence

L

Geo-social Network Data

+

Fig. 1. Graphical architecture of Venue2Vec model.

approach achieves the best performance with Acc@1
being as much as 13.2%, 11.1% and 5.7% higher than
state-of-the-art approach on three datasets, respectively.
As for anytime check-in location prediction task, our
approach still outperforms the competitors with as much
as 16.9%, 41.8% and 10.6% higher advantage on Acc@1
metric over three datasets, respectively. These results
demonstrate the superiority of the proposed Venue2Vec
model over state-of-the-art models.

« We verify that Venue2Vec model is time efficient as it can
be implemented in parallel. The training time of different
models on three GSN datasets shows that Venue2Vec
model can save up to 80% training time on average
due to the multi-worker strategy, which demonstrates the
scalability of the proposed model for large-scale GSNs.

The remainder of the paper is organized as follows. Section

II reviews the related works. Section III formalizes the location
prediction problem. In Section IV, the details of Venue2Vec
model are illustrated. Section V elaborates the experiments.
Finally, Section VI concludes the paper.

II. RELATED WORK

It is believed that human mobility is predictable based on
the historic records. In this section, we will review existing
research works related to our work from two aspects, i.e.
indicative features involved in user location prediction and
mainstream location prediction solutions.

A. Indicative Features for User Location Prediction

Temporal Cyclic Effect. Adequate studies show that human
activity has a strong time periodicity. Montjoye et al. [14]



confirmed that users’ check-in pattern may be cycled around
one day or one week. Gao et al. [15, 16] studied the tem-
poral cyclic patterns of user check-ins in terms of temporal
consecutiveness, and Noulas ef al. [17] incorporated the time
periodicity as the most fundamental feature for users’ next
check-in location prediction.

Geographical Influence. As addressed in [18] and [19], users’
check-in behavior holds a clustering property in space, namely,
there exists a check-in center for each user, and the closer a
user is to the center, the higher probability he will check-in
there. Research in [20] and [21] incorporated the geographical
influence using kernel density estimation into a weighted
matrix factorization framework to alleviate the data sparseness
in location prediction.

Sequential Relation. The succession of human activities is not
random, on the contrary, for example, we may visit the coffee
shop after work or go to a hotel after landing at an airport.
As a consequence, such sequential relation existing in human
mobility is often exploited as a significant indicator for user
location prediction [11, 17]. A typical assumption is that users’
recent check-in locations usually have stronger influence than
those locations visited long time ago [11].

Semantic Information. The textual description, which is one
of the most representative meta-data of a location, has been
widely utilized in user location prediction [22-24]. Zhang et
al. [22] explored the predictive capability of location cate-
gory (e.g. ’Food’, ’Bar’ and ’Shop’) in personalized location
recommendation. Wang et al. [23] studied the effectiveness of
textual tags for location recommendation, while Yin et al. [24]
used a semantic-coherent soft cluster of words associated with
locations to predict a user’s future check-in location.

More recently, a few researchers focused on trying to
incorporate all the above features into one model [7, 25].
For example, Yin et al. [25] designed a probability generating
model by jointly considering temporal cyclic effect, geograph-
ical influence and semantic information, and Liu et al. [7]
combined these features into a neural network framework for
location recommendation. However, these solutions usually
fused different contextual factors using a simple strategy such
as modeling them as weighting coefficients. In contrast, our
work utilizes the non-linear transformation to exploit different
features in an integrated manner, which can not only smoothly
combine various factors in a shared latent space, but also work
as a generic method.

B. Location Prediction Solutions

Existing solutions for location prediction include matrix
factorization based methods [20-22], Markov Chain (MC)
based methods [11], neighborhood based methods [26] and
machine-learning based methods [27, 28]. Matrix factorization
based methods have become the state-of-the-art approaches to
collaborative filtering. The basic objective of matrix factor-
ization in location prediction is to factorize a user-location
preference matrix into two low rank matrices, each matrix
represents the latent factors of users or locations. It has also
been extended to be time-aware in recent years. However, it is
hard for matrix factorization based models to generate latent

representations of new users or new locations in the training
data. Markov Chain based methods aim to predict the next
check-in location of a user based on the past sequential check-
in records. However, these methods generally assume that all
the check-ins are linearly combined, which is indeed a strong
independent assumption among factors [29]. Neighborhood
based methods are widely used in collaborative filtering. They
can be naturally effective for location prediction with both
temporal and spatial contexts and usually have the advantage
of being interpretable. However, neighborhood based methods
are unable to model the underlying properties in users’ se-
quential check-in behaviors. Machine-learning based methods
such as the supervised scoring model and classification model
proposed in [30] have been popular in user location prediction
as they can mine indicative features automatically from users’
check-in data. However, these methods often require that each
user has sufficient check-in data for training, which is not
realistic since users’ check-in records are normally very sparse.

In recent years, embedding methods have proved to be
effective in capturing linguistic regularities of how items (e.g.
words in sentences) interact with each other [31]. Musto et al.
[32] conduct an empirical study to evaluate the effectiveness of
a simplified collaborative filtering recommendation framework
that applies several word embedding techniques to model items
and make recommendations to users. Experimental results in
[33] also indicate the promise of word embedding for location
recommendation. So far, only a few research efforts can be
found that applies embedding methods for user location pre-
diction. In contrast to previous works, this work proposes an
embedding model called Venue2Vec that maps each location
in GSN into a vector, which can be used to predict both users’
next check-in location and users’ future check-in location
at anytime with the time granularity accurate to hour level.
Based on the DeepWalk sampling technique [34], Venue2Vec
incorporates multiple context features (i.e. temporal-spatial
context, semantic information as well as sequential relation)
in an unified framework. Since the training data used for
the model is sampled from global check-in data, it does not
depend on the amount of a specific user’s check-in records.
Last but not least, Venue2Vec model proves to be more
time efficient than other competitive approaches as it can be
naturally parallelizable.

III. PROBLEM DEFINITION

Without loss of generality, we firstly define the key data
structures and notations used in this paper.

Definition 1: (Location). A location in GSN is
defined as a uniquely identified specific site (e.g. a
music bar or a coffee shop). A location contains three
attributes: identifier, geographical coordinates and semantic
information. For example, a movie theater in Tokyo (Japan)
can be represented as {4b558a35f964a520eae627e3,
[35.673587359609904,  139.76270735263824], Art &
Entertainment}, where 4b558a35 f964a520eae627e3 is the
identifier, [35.673587359609904, 139.76270735263824] is
the geographical coordinates of the theater, and the attributes
Art & Entertainment denotes the category or type of the
location.



Definition 2: (Check-in). In a GSN dataset, a check-in is
defined as a triple (u, v, t), in which we say user v made a
check-in at location v at time ¢.

Definition 3: (User Check-in Records). For each user u,
his/her historical check-in records can be defined as a set of
check-ins sorted using timestamp, i.e. C,, = {< u,v1,t1 >, <
Uy Vo, by >, ey < U, Upy by >}

The two categories of location prediction problems in this
paper are defined as follows.

Problem Definition 1: Next Check-in Location Predic-
tion. Given a user u; with his/her historical check-in records
up to time ¢,,—1, i.e. Cy, = {< u,v1,t1 >, < u,v2,t3 >, ..., <
Uy Vp—1,tn—1 >}, the task is to predict top-N locations that
u,; will visit next at time ¢,,, so that the exact location she will
visit is ranked at the highest possible position.

Problem Definition 2: Anytime Check-in Location Pre-
diction. Given a user u; and his/her historical check-in records
C,, as well as a future time ¢ that accurate to hour, our goal
is to predict top-N locations that u; will visit at that time, so
that the exact location she will visit is ranked at the highest
possible position.

We note that the problem definitions given here are different
from our previous work [30]. Here, we produce the prediction
result using all possible candidate locations in the dataset,
while our previous work only considers locations that a user
has visited before, thus is limited and ineffective for predicting
new places.

IV. MODEL DESCRIPTION

In this section, we firstly describe the steps taken to sample
location sequences for model training. Then, we describe
how to learn the vector-space representation of a location in
GSN. Thirdly, two methods for user preference calculation
are introduced. Finally, we explain how to produce the final
prediction results.

A. Sequence Sampling

As mentioned above, we exploit work from natural lan-
guage modelling to infer the embedding, i.e. the vector-space
representation of a location in GSN. The motivation can be
explained from two aspects. Firstly, if we consider the past
check-in records of users as documents which consist of a
list of locations, these locations could be naturally equivalent
to words appearing in a language model corpus. With this,
the sentences used by the language model can be mapped as
the past preferences of users. Secondly, the purposes of the
language model and the location prediction process are quite
similar. Language model aims to predict the words based on
the observed words, which can be considered as equivalent to
predicting future locations based on those already visited.

To encode sequential relation and geographical influence
of locations, we proposed a random walk method to learn
the global transition probability between locations. Random
walk with restart has been successfully used to measure the
correlation between two nodes in a graph [35]. To achieve this
goal, the foremost step is constructing the location sequences

used in the Venue2Vec model. We adopt the DeepWalk sam-
pling technique proposed in [34] to build the location network,
where each node in the topology represents a location and
the weight of each directed edge represents the probability of
travelling from one node to another node.

As sequential relation and geographical influence are veri-
fied to be effective for user location prediction [6, 10, 28], we
construct the random walk sequences over locations by using
a mixture of sequential relation and geographical influence.
The random walk probability, i.e. the weights of an edge
from location v; to location v; over the network is calculated
according to the following equations:

o) = afem) g Few)
Pluilei) = o o T TS oy P
1
K(U% ’U_j) = d(vg,vj)—d (2)
(14" e )

where d(v;,v;) denotes the Euclidean distance between lo-
cation v; and v, using their coordinates, d and o(d) are
the mean and standard deviation of d(vi,vj), respectively,
and f(v;,v;) is the transition frequency from location v; to
location v; in the global training dataset. Indeed, x(v;,v;)
depicts the geographical strength that one location v; relates
to another location v; according to Waldo Tobler’s First Law
of Geography, i.e. “Everything is related to everything else,
but near things tend to be more related than distant things.”
In equation (1), the first term in the right part captures the
inherent geographical influence between locations, while the
second term captures the sequential check-in behavior of users
in GSN. « is used to then balance the two components.

In the sampling process, for each location node, we start
the random walk and sample k sequences from this node !.
To ensure that there is sufficient corpus for model training
we use k = 50. The length of each sequence is randomly
determined, where we bound this between 50 and 100 steps.

An obvious advantage of sampling location sequences in
such a manner is that relying on information obtained from
short random walks makes it possible to accommodate small
changes in the location network without the need for global
re-computation. After these steps, we obtain the location
sequences (similar to words in the textual documents) that
can be used for model training.

B. Embedding Learning

The key technique used to infer the vector-space representa-
tion of a location is similar to Word2Vec [36]. Specifically, we
apply the Skip-gram language model with hierarchical softmax
to learn location embeddings. The Skip-gram model uses the
current location to predict the locations around the current one.
A location’s embedding is learnt to maximize the probability
of seeing its neighbors in the sampled sequences, through
which the semantic and syntactic information of location
sequences could be introduced into the embedding.

'In practice, we use the location identifier to represent each location.



In the Skip-gram language model with hierarchical softmax,
each input sample is in the form of (v, context(v)), where v is
a location in the sequence and context(v) are the neighboring
locations of v. Let the embedding vector of v be z,, the total
path length from root node z, to leaf node v is l,, and dj €
{0,1} is the corresponding Hoffman code for v in the path,
then we can formalize the probability that predicts context(v)
using v as:

p(context(v)|v) = H p(ulv) (3)
u€context(v)
where the probability p(u|v) can be formalized as:
& 1-d? v
p(ul) = [T o))" - —o@lon™ @

=2

Then we obtain the joint probability for all locations in the
corpus using the logarithmic likelihood form:

L=73log []

veV u€context(v) j=2
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(&)
where V' is the collection of all locations in the dataset, o (-)
is the sigmoid function, and 6} corresponds to the parameter
of df.

To obtain the optimal vector representation of v, we need
to maximize the above objective L. The stochastic gradient
descend method is adopted to optimize L. We calculate the
gradient of L to 0} and x, respectively as follows:
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Thereby, the updating rule for location embedding x, can
be written as follows:

Ly
oo Y —di—o(le]e; ®)
j=2

u€context(v) j=

Ty i =Ty + 7

where 7 is the learning rate during the model training, and it
is set to 0.025 according to [36]. As for the dimension size
of location vectors and the window size (i.e. the context size)
when we train the model using the Skip-gram model, they will
be given in the experiments section (See section 5.4).

After the low-dimension vector representation of locations
is obtained, we further concatenate the corresponding semantic
information to the location vector representation. For example,
with regard to the above movie theater in Tokyo (Japan), we
will add the category vector Art & Entertainment to the
location vector 4b558a35f964a520eae627e3. Note that the
extra category vector has the same dimension as the location

[T {002~ 1 - o(aTon)®

vector 2. In this way, locations of the same type and those are
geographically near, or often visited successively by users will
be closer in the shared embedding space.

C. User Preference Learning

1) Next Visit: We assume that users’ preferences do not
change significantly within the short-term. To keep track of
a given user’s preference at his/her next visit, we adopt a
time-decay manner to compute it based on the embeddings
of his/her past visits. If a location is visited by this user more
recently, it becomes more important and is therefore assigned
a higher weight. The preference of a given user u’s next visit

is calculated in the form of exponential decay:
ug,, = Z et ey,

(u,vi,t:)€CLN(E; <tp)

€))

where C,, is the collection of all u's check-in records, and ey,
is the vector representation of location v;. Note that, the check-
ins in C, are ranked according to their check-in timestamps
in an increasing order.

2) Future Visit at A Given Time: When a specific time
t is given (in hours), we can calculate the target user w’s
preference at that time based on his/her past visits. Here,
we count the frequency of the location the user has visited
during time window ¢t in the training dataset, and then use
the normalized frequency as the weight to calculate his/her
preference embedding.

Z f v ey

1
! (10)
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where |C,'| is the number of u’s check-ins during time
window ¢ in his/her historical records, f,“ is the frequency
of location v being visited by this user during time window ¢,
and e, is the vector representation of location v.

D. Prediction

We designed two specific methods to predict user’s future
check-in location in this work. The first method is inspired
from the k-nearest neighbor approach (KNN). In the prediction
step, the cosine similarity > between the target user and all
the candidate locations is calculated. Locations that are most
similar to the target user are given as the prediction result.

Considering that users tend to visit places that are geograph-
ically nearby to each other, we further incorporate a distance
factor using kernel density estimation in the prediction step.
For each location in the prediction list calculated by KNN
method above, we add a normalized distance factor to it (KNN
+ KDE) according to the following equation.

pIC) = L 3 (stlnl)

o|Cyl S o

1L

2We adopt the Word2Vec model pre-trained on 3.9G Google news corpus as
the category vector representation. If the size of location vector trained using
Skip-gram model is n, category vector of the same size n will be concatenated
after it.

3We have also tried other metrics like the Euclidean distance to measure
the similarity between user preference and location vectors, but the prediction
performance is significantly worse than using cosine similarity. As a result,
we choose cosine similarity as the metric.



where ¢(z) is the standard normal distribution function, o
is the optimal bandwidth and ¢ ~ 1.065|C,, 3 according to
[22], in which & is the standard deviation of distance between
locations in C',. This distance factor takes into account the
impact of each location in the users’ historical records, on
the candidate location. The closer the candidate location is
to historical check-ins, the higher the probability of it being
visited in the future. In this way, we further strengthen the
effect of geographical influence on the final location prediction
results given by the location embeddings.

V. EXPERIMENTS

The experiments are conducted on a PC workstation with
an Intel Core 17-6700 processor, 24G RAM and 64-bit Ubuntu
operating system. The experimentation software is written in
Python.

A. Datasets

In this work, we use three public real-world GSN datasets:
NYC, TKY, and CA for experimental evaluation. All the
datasets are crawled from Foursquare, where NYC stands
for New York (USA), TKY stands for Tokyo (Japan) and
CA represents California (USA), respectively. The former two
datasets NYC and TKY are collected by [37], and the third
dataset CA is collected by [25]. For all the three datasets, we
remove the less frequent users and locations from each dataset
to ensure that each user has at least 10 check-ins, and each
location has been visited by at least 10 users. The statistics of
the selected datasets are shown in Table 1.

TABLE I
STATISTICS OF DATASETS

NYC TKY CA
No. of users 950 2,274 2,259
No. of locations 1,167 2,865 3,244
No. of check-ins 45,632 333,184 111,817

B. Comparison Models

As existing research that can predict both users’ next check-
in location and users’ future check-in location at anytime is
quite rare, we will compare our model with several state-of-
the-art models on these two tasks separately.

1) Comparison Models For Next Location Prediction:
We compare our model against the following state-of-the-art
models on next check-in location task:

e Most Popular Locations (MPL1): this model is often
selected as a baseline. For prediction, the most popular
location in the given user’s check-in history is listed as
the result.

¢ Geo-Recency Model (GRM) [21]: this model infuses geo-
recency information into a non-negative matrix factoriza-
tion model, and uses the reconstructed user matrix for
location prediction.

e PRME-G [28]: this model embeds user and location
into the same latent space to capture the user transition
patterns. The geographical influence is incorporated in

PRME-G through a simple coefficient. We use the rec-
ommended settings of 60 dimensions as given in their
paper.

e Graph based Embedding (GE) [6]: this model jointly
learns the embeddings of locations, regions, time slots,
and auxiliary metadata (i.e. category information) in one
common hidden space. The final score of each candidate
location is calculated by a linear combination of the inner
products for these contextual factors. We use the best
hyper-parameters reported in their paper.

2) Comparison Models For Anytime Location Prediction:
We compare our model against the following state-of-the-art
models on anytime check-in location task:

o Most Popular Locations (MPL2): this model selects the
most popular locations during the given time window as
the result.

o Multi-feature Model (MfM) [17]: it employs a set of
predictive features including user mobility feature, global
mobility feature and temporal features to form a super-
vised learning framework. To exploit the union of these
features, a decision tree is trained to compute the ranking
score of each candidate location.

o« UCGT [24]: this is a collective Bayesian generative
model for user check-in behavior prediction. Based on
the discovered communities, we can predict a user’s
future check-in location considering his spatial-temporal
preferences. For UCGT model, we set the number of
communities to be 40 and the number of topics to be
30 to achieve the best performance.

C. Evaluation Metrics

Given historical check-in records C,, of user u, we rank
them according to their check-in timestamps. Then, we use
the first 80% check-ins as the training data, the following
10% check-ins as the validation data to tune the model hyper-
parameters, and the last 10% check-ins as the testing data.

Two metrics from different aspects are leveraged to evaluate
the performance of location prediction in this work. The first
metric is Average Percentile Rank (APR), which is often
used to measure the extent how a future check-in location can
be highly ranked [17, 30]. For each single prediction case, the
metric is equal to 1 when the location to be visited is ranked
first, and it linearly decreases to O when the correct location
is ranked at the bottom of the list. The calculation method is
as follows.

|L| — rank(k)
PR=—7-—
L]

where |L| is the total number of candidate locations and
rank(k) is the rank of the ground-truth location in the list.
We average all the prediction cases as the final result.

The second metric is Accuracy@N, which is often used to
evaluate the accuracy of prediction or recommendation tasks
[6, 38]. We successfully predict the future check-in location
for a user only when we rank that location in the top-N list.
The calculation method is as follows.
#hitQN

L]

(12)

AccQN = (13)



where #hitQN denotes the number of hits in the whole test
set. Again, the final result is the average value over all test
instances.

D. Results and Evaluation

1) Experimental Setup: To evaluate the prediction perfor-
mance of the Venue2Vec model proposed in this paper, we first
have to set suitable hyper-parameters including the balancing
coefficient « in the sequence sampling process, the original
vector dimension d and window size w when we train the
model using Skip-gram language model. The candidate values
of the above three variables are o« = {0.0,0.1,0.2,0.3,...1.0},
d = {50, 60, 70,80, 90, 100} and w = {5, 10, 15, 20}, respec-
tively.

First of all, we adopt the proposed KNN approach to evalu-
ate the effect of «, which is used to balance the geographical
influence and sequential relation between two locaitons. With
the other variables d and w remaining fixed, we find that
different o values have very similar effects on the prediction
results (for example, in the next check-in location prediction
task, APR metric on NYC dataset is consistently in the range
of [0.770,0.773] when « varies). Basically, the closer the value
of v is to 0, the higher the predictive performance of the model.
The best performance is achieved when the balanc-ing
coefficient & = 0 for both prediction scenarios, which means
no geographical influence factor is exploited at all in model
training. This suggests that the geographical influence and the
sequential relation do not contain complementary information
in the embedding process. In other words, the geographical
influence may be encoded within the sequential relation. An
intuitive fact may support the above finding, that is, when a
user is to visit the next place, he/she will most likely choose a
location nearby, rather than a place faraway. Toward the
dimension of location embeddings, we find that increasing the
value of d improves the performance in terms of APR metric
for both prediction tasks. The effect of the increase is obvious
when this parameter is less than 40, and it achieves relatively
stable performance when d is in the range of [80,100]. In most
cases, except for predicting next location on NYC dataset, the
best results are obtained when the dimension of location
vectors reaches the maximal value 100. It is stated in [26] that
bigger vector dimension can lead to more accurate
performance, but requires more data and more training time.
Considering that the total number of locations in these datasets
are relatively limited, we do not need to increase vector
dimensions. As for the window size, which assigns the
maximum distance between the current location and the
surrounding locations during model training, we find that
different window sizes have little effect on the final results of
both prediction tasks. For rigorous consideration, we finally
choose the window sizes that produce relatively better
performance. The best parameter combination for both
prediction scenarios is reported in Table II.

To visually illustrate the effect of our model, we plot the
vector representation of all locations in the three datasets using
t-SNE algorithm [39], which is an efficient dimensionality
reduction algorithm for visualization. For all datasets, the

TABLE I
PARAMETER SETUP FOR TWO PREDICTION TASKS ON EACH DATASET

Next Location Prediction Anytime Location Prediction

NYC «a=0.0,d=280,w=10 a=0.0,d =100, w =10
TKY a=0.0,d=100,w=10 «=0.0,d=100,w =20
CA a=00,d=100, w=10 «a=0.0,d=100, w =20

results are plotted with the best parameters reported above.
Limited by paper space, we only plot location embeddings
for next location prediction task. Figure 2 shows the 2D
embedding of all locations. To better distinguish the points
in each subfigure, we add a categorical mark for each point
based on Foursquare Category API 4, including ‘Food’ (F),
‘Art & Entertainment’ (A), ‘Travel & Transport’ (T), and
‘Shop & Services’ (S). In total, 8 different categorical marks
are summarized. Figure 2 suggests that locations of the same
type cluster well for all three datasets. Although the clustering
effect in CA dataset is not as obvious as that in NYC dataset
and TKY dataset, the result is still acceptable considering
that California has a much larger geographical scope and
more specific locations than New York City and Tokyo. As
we learn the location embeddings by incorporating sequential
relation, geographical influence and semantic information in
an unified manner, this observation verifies our assumption
that locations of the same type, those that are geographically
nearby, and those visited successively by users will be closer
situated within the embedding space.

2) Analysis of Experimental Results: Next, we compare
our model with other approaches in terms of top-N location
predictions. Note that we only show the performance when
N = {1,5,10} since a greater value of N does not make
sense in real application scenarios. We show the comparison
results among multiple models on next location prediction
task in Table III, in which the first two methods K NN
and KNN+KDE are implemented based on our Venue2Vec
model, followed by other comparison models. The best results
are highlighted in bold font on each metric. As we can see,
the two proposed prediction methods based on Venue2Vec
model outperform other models significantly, which means our
model can generally rank the true location at a higher position
in the candidate list compared against other models. This
observation demonstrates the superiority and effectiveness of
the proposed Venue2Vec model on next location prediction
task. Also, when we incorporate the distance factor using
kernel density estimation for next location prediction (i.e.
KNN+KDE), it can produce a better result than if only
considering user preference (i.e. K NN). Considering that in
the training process, the best performance of Venue2Vec model
is achieved when geographical influence factor was ignored
(o = 0), here we see that prediction process is actually
improved by incorporating the distance factor.

Similar results can also be found in Table IV, where the
comparison on anytime location prediction task is summa-
rized. As can be seen from Table IV, although UCGT model
performs slightly better than K NN, the best performance is
still achieved by K NN+K DFE. In addition, we can see that

“http://api.foursquare.com/v1/categories
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Fig. 2.
TKY and CA datasets, respectively.

2D embedding of locations for next check-in location prediction task, where the original Skip-gram vector dimensions is 80, 100, 100 for NYC,

TABLE III
COMPARISON OF USER NEXT LOCATION PREDICTION RESULTS OVER THREE DATASETS USING AP R AND Accuracy@N METRICS.

NYC TKY CA
Acc@Ql  Acc@Q5 Acc@Ql0 APR Acc@Ql Acc@Q5 Acc@Ql0 APR AccQl  Acc@5 Acc@l0 APR
KNN 0.215 0.272 0.318 0.773 0.213 0.330 0.417 0.846 0.134 0.180 0.215 0.830
KNN+KDE 0.248 0.310 0.351 0.760 0.290 0.379 0.431 0.862 0.148 0.197 0.237 0.835
MPL1 0.157 0.188 0.206 0.674 0.148 0.185 0.206 0.833 0.124 0.165 0.195 0.768
GRM 0.171 0.216 0.282 0.695 0.205 0.262 0.324 0.845 0.126 0.160 0.183 0.762
PRME-G 0.166 0.197 0.264 0.688 0.188 0.237 0.309 0.841 0.112 0.147 0.173 0.755
GE 0.219 0.297 0.346 0.767 0.261 0.340 0.392 0.858 0.140 0.183 0.222 0.828

TABLE IV

COMPARISON OF USER ANYTIME LOCATION PREDICTION RESULTS OVER THREE DATASETS USING APR AND Accuracy@QN METRICS.

NYC TKY CA
Acc@Ql  Acc@Q5 Acc@Ql0 APR Acc@Ql Acc@5 Acc@l0 APR Acc@Ql Acc@Q5 Acc@Ql0 APR
KNN 0.136 0.180 0.205 0.713 0.118 0.146 0.183 0.803 0.088 0.121 0.146 0.769
KNN+KDE 0.166 0.202 0.237 0.722 0.173 0.214 0.265 0.834 0.104 0.132 0.165 0.815
MPL2 0.106 0.129 0.152 0.671 0.088 0.111 0.136 0.774 0.078 0.110 0.139 0.714
MfM 0.137 0.186 0.203 0.679 0.114 0.138 0.172 0.792 0.083 0.117 0.142 0.728
UCGT 0.142 0.198 0.226 0.715 0.122 0.183 0.251 0.816 0.094 0.128 0.157 0.773

the metric values of anytime location prediction are generally
lower than that of next location prediction. This is because
the calculation of a user’s preference at a given future time
only considers his/her historical check-in records during the
given time window, which essentially leads to a sparse profile
of the user. In contrast, the calculation of a user’s preference
at next visit takes into account all his/her historical check-
in data through the time-decay manner, which avoids the
instability of the prediction results brought by this kind of
data sparseness to some extent. From the aforementioned
experimental results, we can also observe that the location
prediction method K NN+ K DE based on Venue2Vec model
has outstanding performance in the metric Acc@1, which
has significant commercial value corresponding to practical
application. Considering that we can rank a location a user
will visit in the future at the Top-1 position, it is a remarkable
performance as there are tens of thousands places to be ranked
in a city. In summary, the location prediction techniques based
on the proposed Venue2Vec model show effectiveness and
superiority in both user location prediction scenarios.

We further analyze the effectiveness of our model within
different time intervals during a day. We divide the time of
day into 24 ordered hours, and study the location prediction
performance of Venue2Vec model over time intervals in two
user location prediction tasks. To make the analysis universal,
we display the result curve in terms of Acc@l computed
by the prediction method K NN+KDE on each dataset in
Figure 3. The prediction accuracy during daytime is generally
higher than that during night time. In most cases, the best
performance appears in the 8th hour in the morning and
the 19th hour in the afternoon. This is likely due to regular
activities such as taking public transportation during these time
intervals, however, when people finish work, they tend to have
more personalized activities in the evening which can be much
harder to predict. Also, the location prediction accuracy based
on NYC and TKY datasets is significantly higher than that
based on CA. This is because the first two datasets only cover
users’ check-in data in a single city, while the CA covers the
check-in data of users throughout the state of California, hence
a broader geographical scope. Under the premise that the data



size of per user is not much different, the check-in data in CA
is more sparse, which results in lower predictability.
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Fig. 3. Curve of Acc@1 with different time intervals on both user location
prediction tasks.

We also summarize the location prediction performance of
two tasks in terms of Acc@1 for both weekdays (from Monday
to Friday) and weekends (Saturday and Sunday) in Table V.
As can be seen, the location prediction accuracy in weekdays
is significantly higher than that at weekends. This is likely
because people’s mobility at weekends is uncertain compared
with that in weekdays. They tend to take relatively unusual
activities like sporting and hiking at weekends, rather than
regular activities such as travelling to work on weekdays.

TABLE V
Acc@1 METRIC OF TWO LOCATION PREDICTION TASKS ON WEEKDAYS
AND WEEKENDS.

Next Location Prediction ~ Anytime Location Prediction

NYC TKY CA NYC TKY CA
Weekdays  0.259 0298  0.166  0.185  0.188 0.121
Weekends  0.214  0.273  0.142  0.150  0.164 0.083

3) Analysis on Cold-start Problems: As many new point-
of-interests (e.g. restaurants and shops) are emerging every
day in our real life and many new users who have not got
any preference history are joining the Geo-social networks,
location prediction under such cold-start conditions is be-
coming indispensable. Here, we evaluate the performance of
Venue2Vec model for cold-start scenario. It is worth noting
that since each dataset is preprocessed to retain only active
users and locations (see Section 5.1), we therefore randomly
select 100 inactive users that were excluded from the training
dataset for evaluation. For evaluation purpose, when we select

these inactive users, we restrict that all the locations they have
visited in their historical check-in records be included in the
training set.

For Venue2Vec model, when calculating users’ preference
under cold-start condition, we adopt the following way for
both location prediction tasks: if the target user has only
one check-in record, we take the average preference of all
active users in the training dataset as his/her preference; and
if the target user has more than one check-in records, we still
calculate his/her preference according to the proposed methods
in Section 4.3. The experimental results in terms of Acc@1 are
shown in Figure 4. We can observe that, for next user location
prediction task, the performance of Venue2Vec model is higher
than that of GRM and PRME-G under cold start conditions,
but GE performs equivalent and even slightly better than
Venue2Vec model. This is mainly because GE model can still
learn vector representations for cold-start users by embedding
them into the shared latent space. Indeed, GE model leverages
not only the geographical influence and semantic information,
but also the sequential relation as well as the temporal cyclic
effect lying in users’ check-in data. In contrast, GRM and
PRME-G can only use the geographical information. For
anytime user location prediction task, however, Venue2Vec
model performs consistently better than its competitors. This
suggests that incorporating multiple contextual factors is pos-
itive for alleviating the cold-start problem in anytime location
prediction. In general, the proposed Venue2Vec model has
certain advantages for cold-start scenario.
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Fig. 4. Cold-start Acc@Q1 comparison on two user location prediction tasks.

4) Analysis of Time Efficiency: Apart from having desirable
prediction performance, the proposed Venue2Vec model is also
time efficient as it can be scalable using a parallel imple-
mentation. The location sequence sampling process and model
training as well as model testing can be easily parallelized on



multicore machines. In terms of the sampling process, several
random walkers in different threads can simultaneously ex-
plore different parts of the location network. As we mentioned
in Section 4.1, since the sampling steps are flexible to small
changes in the network structure without the need for global
re-computation, the overall location prediction model can be
time efficient. For model training, a multi-worker similar to
Python word2vec multiprocessing > is adopted to parallelize
the location embedding process. For model testing, as we
predict the location of each check-in record per user in the
testing data separately, it can be naturally parallelizable.

We compare the time consumption of Venue2Vec model and
other comparison models during model training and testing.
For the sake of fairness, we ignore the time consumption
during the preparation process such as data preprocessing and
location sampling (because only Venue2Vec model involves
sampling steps). The time spent on each dataset using our PC
(4 physical cores and 8 threads) to train the model and to
predict the check-in location of all target users are presented
in Figure 5. The presented time results for model training are
calculated when the best hyper-parameters are fixed for each
model. As the next user location prediction task and anytime
user location prediction task share the model training stage,
we only show the results for next location prediction task.
As we can observe, the time consumed by each model for
testing on each dataset is almost the same, because each model
calculates the cosine similarity between user preference and
location vector when predicting users’ next check-in location,
after which the final result is produced by sorting the user-
location ratings. However, Venue2Vec model consumes much
less time than other models during model training due to the
multi-worker implementation. It can save up to 80% training
time on average using different datasets, which shows that
Venue2Vec model is scalable for large-scale GSNs. Comparing
to other models that may delay on model updates caused by
the expensive time cost of re-running, the proposed Venue2Vec
model is superior in terms of time efficiency.
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Fig. 5. Time consumption for model training and model testing in next user
location prediction task.

5) Further discussion: Our experimental results reveal the
effectiveness and the superiority of the proposed Venue2Vec
model. Although we study the location prediction problem
only based on three Foursquare datasets, Venue2Vec model
has strong generalization ability for all kinds of Geo-social

Shttps://rare-technologies.com/parallelizing-word2vec-in-python/

networks since it comprehensively considers various compli-
mentary factors. It is a generic flexible model that can be
extended to incorporate other factors, not limited to temporal-
spatial context, semantic information and sequential relation.

However, there are some deficiencies in our current model.
For example, we currently ignore friendship relation when
calculating users’ preference at next visit and at the future
time, however friendships will naturally play an important
role in where a user may visit. We also found that the
number of unique locations in these experimental datasets
is quite limited, which will affect the generalization of the
experimental results. Finally, we would like to extent our
approach to consider additional user-generated content such
as text, pictures, and ratings, that again would likely increase
the predictive performance for future use.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we study the problem of users’ check-in
location prediction in Geo-Social Networks. We present a
novel embedding model called Venue2Vec which naturally
encodes temporal-spatial context, semantic information as well
as sequential relation so as to improve location prediction
performance and meanwhile increase the interpretability of
the model. We conduct extensive experiments to evaluate the
performance of our model on three real-world GSN datasets.
The results reveal the effectiveness and the superiority of
Venue2Vec model. Besides, our model also proves to be time
efficient.

As for future work, we can further consider the impact
of friendship or community on users’ check-in location pre-
diction. Additionally, the multi-modal data such as images,
ratings, and textual reviews associated with the locations can
be explored.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China under Grants No. 61772133, No. 61472081,
No. 61402104, No. 61370207, No. 61370208, No. 61300024,
No. 61320106007, Key Laboratory of Computer Network
Technology of Jiangsu Province, Jiangsu Provincial Key Lab-
oratory of Network and Information Security under Grants
No. BM2003201, and Key Laboratory of Computer Network
and Information Integration of Ministry of Education of China
under Grants No. 93K-9.

REFERENCES

[1] H. Li, Y. Ge, H. Zhu, and H. Zhu, “Point-of- inter-
est recommendations: Learning potential check-ins from
friends,” in ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 975—
984.

[2] T. Hu, R. Song, Y. Wang, X. Xie, and J. Luo, “Min-
ing shopping patterns for divergent urban regions by
incorporating mobility data,” in ACM International on
Conference on Information and Knowledge Management,
2016, pp. 569-578.



(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

N. J. Yuan, Y. Zheng, X. Xie, Y. Wang, K. Zheng, and
H. Xiong, “Discovering urban functional zones using
latent activity trajectories,” Knowledge and Data Engi-
neering IEEE Transactions on, vol. 27, no. 3, pp. 712—
725, 2015.

Y. Jiang, W. He, L. Cui, and Q. Yang, “User location
prediction in mobile crowdsourcing services,” in In-
ternational Conference on Service-Oriented Computing.
Springer, 2018, pp. 515-523.

A. Likhyani, D. Padmanabhan, S. Bedathur, and
S. Mehta, “Inferring and exploiting categories for next
location prediction,” in Proceedings of the 24th Interna-
tional Conference on World Wide Web. ACM, 2015, pp.
65-66.

M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, and S. Wang,
“Learning graph-based POI embedding for location-
based recommendation,” in Proceedings of the 25th ACM
International Conference on Information and Knowledge
Management, Indianapolis, IN, USA, October 24-28,
2016, pp. 15-24.

Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next
location: a recurrent model with spatial and temporal
contexts,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016, pp. 194-200.

Y. Long, P. Zhao, V. S. Sheng, G. Liu, J. Xu, J. Wu,
Z. Cui, Y. Long, P. Zhao, and V. S. Sheng, “Social
personalized ranking embedding for next poi recom-
mendation,” in The [8th International Conference on
Web Information Systems Engineering, Puschino, Russia,
October 7-11, 2017, pp. 91-105.

J. B. Gomes, C. Phua, and S. Krishnaswamy, “Where will
you go? mobile data mining for next place prediction,”
in International Conference on Data Warehousing and
Knowledge Discovery. Springer, 2013, pp. 146-158.
H. Zhang, Z. Chen, Z. Liu, Y. Zhu, and C. Wu, “Loca-
tion prediction based on transition probability matrices
constructing from sequential rules for spatial-temporal
k-anonymity dataset,” Plos One, vol. 11, no. 8, 2016.
J.D. Zhang, Y. Li, and Y. Li, “Lore: exploiting sequential
influence for location recommendations,” in ACM Sigspa-
tial International Conference on Advances in Geographic
Information Systems, 2014, pp. 103—112.

E. Bart, R. Zhang, and M. Hussain, “Where would you go
this weekend? time-dependent prediction of user activity
using social network data,” in Proceedings of the 7th
International AAAI Conference on Weblogs and Social
Media, 2013, pp. 669-672.

S. Li, X. Wang, S. Zhao, J. Wang, and L. Li, “Lo-
cal semidefinite programming-based node localization
system for wireless sensor network applications,” IEEE
Systems Journal, vol. 8, no. 3, pp. 879-888, Sept 2014.
Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and
V. D. Blondel, “Unique in the crowd: The privacy bounds
of human mobility,” Scientific Reports, vol. 3, p. 1376,
2013.

H. Gao, J. Tang, X. Hu, and H. Liu, “Modeling tem-
poral effects of human mobile behavior on location-
based social networks,” in Proceedings of the 22nd ACM

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

International Conference on Conference on Information
& Knowledge Management. —ACM, 2013, pp. 1673—
1678.

H. Gao, J. Tang, and X. Hu, “Exploring temporal effects
for location recommendation on location-based social
networks,” in Proceedings of the 7th ACM Conference
on Recommender Systems. ACM, 2013, pp. 93-100.
A. Noulas, S. Scellato, N. Lathia, and C. Mascolo,
“Mining user mobility features for next place prediction
in location-based services,” in IEEE 12th International
Conference on Data Mining. 1EEE, 2012, pp. 1038—
1043.

C. Petersen, J. G. Simonsen, and C. Lioma, “Power law
distributions in information retrieval,” ACM Transactions
on Information Systems (TOIS), vol. 34, no. 2, p. 8, 2016.
H. Gao, J. Tang, and H. Liu, “Exploring social-historical
ties on location-based social networks,” in Proceedings of
the 6th International AAAI Conference on Weblogs and
Social Media, 2012, pp. 114-121.

D. Lian, Y. Zhu, X. Xie, and E. Chen, “Analyzing lo-
cation predictability on location-based social networks,”
in Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Springer, 2014, pp. 102-113.

R. Assam, S. Sathyanarayana, and T. Seidl, “Infus-
ing geo-recency mixture models for effective location
prediction in lbsn,” in Proceedings of the 2016 SIAM
International Conference on Data Mining. SIAM, 2016,
pp. 855-863.

J. D. Zhang and C. Y. Chow, “Geosoca: Exploiting geo-
graphical, social and categorical correlations for point-of-
interest recommendations,” in International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 2015, pp. 443-452.

W. Wang, H. Yin, L. Chen, Y. Sun, S. Sadiq, and
X. Zhou, “Geo-sage: A geographical sparse additive
generative model for spatial item recommendation,” in
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2015, pp. 1255-1264.

H. Yin, Z. Hu, X. Zhou, H. Wang, K. Zheng, Q. V. H.
Nguyen, and S. Sadiq, “Discovering interpretable geo-
social communities for user behavior prediction,” in
IEEE International Conference on Data Engineering,
2016, pp. 942-953.

H. Yin, B. Cui, X. Zhou, W. Wang, Z. Huang, and
S. Sadiq, “Joint modeling of user check-in behaviors for
real-time point-of-interest recommendation,” Acm Trans-
actions on Information Systems, vol. 35, no. 2, p. 11,
2016.

M. G. Ozsoy, “From word embeddings to item recom-
mendation,” arXiv preprint arXiv:1601.01356, 2016.

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua,
“Neural collaborative filtering,” in The 26th International
World Wide Web Conference, Perth, Australia, April 3-7,
2017, pp. 173-182.

S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and
Q. Yuan, “Personalized ranking metric embedding for
next new poi recommendation,” in International Confer-
ence on Artificial Intelligence, 2015, pp. 2069-2075.



[29] P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng,
“Learning hierarchical representation model for nextbas-
ket recommendation,” in International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, 2015, pp. 403-412.

[30] J. Cao, S. Xu, X. Zhu, R. Lv, and B. Liu, “Effective
fine-grained location prediction based on user check-
in pattern in lbsns,” Journal of Network and Computer
Applications, vol. 108, pp. 64 — 75, 2018.

[31] O. Barkan and N. Koenigstein, “Item2vec: Neural item
embedding for collaborative filtering,” pp. 1-6, 2016.

[32] C. Musto, G. Semeraro, M. de Gemmis, and P. Lops,
“Word embedding techniques for content-based recom-
mender systems: An empirical evaluation,” in ACM Con-
ference on Recommender Systems, vol. 1441, 2015.

[33] J. Manotumruksa, C. Macdonald, and I. Ounis, “Mod-
elling user preferences using word embeddings for
context-aware venue recommendation,” 2016.

[34] B. Perozzi, R. Alrfou, and S. Skiena, “Deepwalk: online
learning of social representations,” in The 20th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, New York, NY, USA, August 24
- 27, 2014, pp. 701-710.

[35] H. Tong, C. Faloutsos, and J. Y. Pan, “Fast random
walk with restart and its applications,” in International
Conference on Data Mining, 2006, pp. 613-622.

[36] T. Mikolov, G. Corrado, K. Chen, J. Dean, T. Mikolov,
G. Corrado, K. Chen, and J. Dean, “Efficient estimation
of word representations in vector space,’ in International
Conference on Learning Representations, 2013, pp. 1-12.

[37] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, “Mod-
eling user activity preference by leveraging user spatial
temporal characteristics in lbsns,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 45, no. 1,
pp- 129-142, 2015.

[38] S. Li, T. Tryfonas, G. Russell, and P. Andriotis, ‘“Risk
assessment for mobile systems through a multilayered
hierarchical bayesian network,” IEEE Transactions on
Cybernetics, vol. 46, no. 8, pp. 1749-1759, Aug 2016.

[39] L. van der Maaten and G. Hinton, “Visualizing data using
t-SNE,” Journal of Machine Learning Research, vol. 9,
pp- 2579-2605, 2008.





