2,466 research outputs found

    Neutron-Diffraction Measurements of an Antiferromagnetic Semiconducting Phase in the Vicinity of the High-Temperature Superconducting State of Kx_xFe2y_{2-y}Se2_2

    Full text link
    The recently discovered K-Fe-Se high temperature superconductor has caused heated debate regarding the nature of its parent compound. Transport, angle-resolved photoemission spectroscopy, and STM measurements have suggested that its parent compound could be insulating, semiconducting or even metallic [M. H. Fang, H.-D. Wang, C.-H. Dong, Z.-J. Li, C.-M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. 94, 27009 (2011); F. Chen et al. Phys. Rev. X 1, 021020 (2011); and W. Li et al.,Phys. Rev. Lett. 109, 057003 (2012)]. Because the magnetic ground states associated with these different phases have not yet been identified and the relationship between magnetism and superconductivity is not fully understood, the real parent compound of this system remains elusive. Here, we report neutron-diffraction experiments that reveal a semiconducting antiferromagnetic (AFM) phase with rhombus iron vacancy order. The magnetic order of the semiconducting phase is the same as the stripe AFM order of the iron pnictide parent compounds. Moreover, while the root5*root5 block AFM phase coexists with superconductivity, the stripe AFM order is suppressed by it. This leads us to conjecture that the new semiconducting magnetic ordered phase is the true parent phase of this superconductor.Comment: 1 table, 4 figures,5 page

    Cosmic ray spectral hardening due to dispersion in the source injection spectra

    Full text link
    Recent cosmic ray (CR) experiments discovered that the CR spectra experience a remarkable hardening for rigidity above several hundred GV. We propose that this is caused by the superposition of the CR energy spectra of many sources that have a dispersion in the injection spectral indices. Adopting similar parameters as those of supernova remnants derived from the Fermi γ\gamma-ray observations, we can reproduce the observational CR spectra of different species well. This may be interpreted as evidence to support the supernova remnant origin of CRs below the knee. We further propose that the same mechanism may explain the "ankle" of the ultra high energy CR spectrum.Comment: 5 pages, 3 figures and 1 table. Updated with the diffusion propagation model, accepted by Phys. Rev.

    Phase Reversal Diffraction in incoherent light

    Full text link
    Phase reversal occurs in the propagation of an electromagnetic wave in a negatively refracting medium or a phase-conjugate interface. Here we report the experimental observation of phase reversal diffraction without the above devices. Our experimental results and theoretical analysis demonstrate that phase reversal diffraction can be formed through the first-order field correlation of chaotic light. The experimental realization is similar to phase reversal behavior in negatively refracting media.Comment: 8 pages, 5 figure

    Light-cone QCD predictions for elastic ed-scattering in the intermediate energy region

    Get PDF
    The contributions of helicity-flip matrix elements to the deuteron form factors are discussed in the light-cone frame. Normalized A(Q2)A(Q^2), B(Q2)B(Q^2), GQ(Q2)G_Q(Q^2) and T20T_{20} are obtained in a simple QCD-inspired model. We find that G++G_{+-}^+ plays an important role in GQ(Q2)G_Q(Q^2). Our numerical results are consistent with the data in the intermediate energy region.Comment: 9 pages, REVTeX file, 5 figure

    Production of 6-aminopenicillanic acid in aqueous two-phase systems by recombinant Escherichia coli with intracellular penicillin acylase

    Get PDF
    Bioconversion of Penicillin G in PEG 20000-Dextran T 70 aqueous two-phase systems was achieved using the recombinant Escherichia coli A56 (ppA22) with intracellular penicillin acylase as catalyst. The best conversion conditions were attained for: 7%(w/v) substrate (penicillin G), enzyme activity in bottom phase 52 U/ml, pH 7.8, temperature 37°C, reaction time 40 min. Five repeated batches could be performed in these conditions. Conversions ratios between 0.902-0.985mol of 6-aminopenicillanic acid (6-APA) per mol of penicillin G, were obtained and specific productivity was 3.6-4.6 μmol/min•ml. In addition the product 6-APA could directly be crystallized from the top phase with a purity of 96.2%.Science & Technological Commission of Shanghai Municipal People’s Government

    Observation of orbital ordering and origin of the nematic order in FeSe

    Full text link
    To elucidate the origin of nematic order in FeSe, we performed field-dependent 77Se-NMR measurements on single crystals of FeSe. We observed orbital ordering from the splitting of the NMR spectra and Knight shift and a suppression of it with magnetic field B0 up to 16 T applied parallel to the Fe-planes. There is a significant change in the distribution and magnitude of the internal magnetic field across the orbital ordering temperature Torb while stripe-type antiferromagnetism is absent. Giant antiferromagnetic (AFM) spin fluctuations measured by the NMR spin-lattice relaxation are gradually developed starting at ~ 40 K, which is far below the nematic ordering temperature Tnem. These results demonstrate that orbital ordering is the origin of the nematic order, and the AFM spin fluctuation is the driving mechanism of superconductivity in FeSe under the presence of the nematic order.Comment: 6 pages, 4 figure

    QED Renormalization Given in A Mass-Dependent Subtraction and The Renormalization Group Approach

    Full text link
    The QED renormalization is restudied by using a mass-dependent subtraction which is performed at a time-like renormalization point. The subtraction exactly respects necessary physical and mathematical requirements such as the gauge symmetry, the Lorentz- invariance and the mathematical convergence. Therefore, the renormalized results derived in the subtraction scheme are faithful and have no ambiguity. Especially, it is proved that the solution of the renormalization group equation satisfied by a renormalized wave function, propagator or vertex can be fixed by applying the renormalization boundary condition and, thus, an exact S-matrix element can be expressed in the form as written in the tree diagram approximation provided that the coupling constant and the fermion mass are replaced by their effective ones. In the one-loop approximation, the effective coupling constant and the effective fermion mass obtained by solving their renormalization group equations are given in rigorous and explicit expressions which are suitable in the whole range of distance and exhibit physically reasonable asymptotic behaviors.Comment: 29 pages, 4 figure
    corecore