26 research outputs found

    Dissimilarity-based representation for radiomics applications

    Full text link
    Radiomics is a term which refers to the analysis of the large amount of quantitative tumor features extracted from medical images to find useful predictive, diagnostic or prognostic information. Many recent studies have proved that radiomics can offer a lot of useful information that physicians cannot extract from the medical images and can be associated with other information like gene or protein data. However, most of the classification studies in radiomics report the use of feature selection methods without identifying the machine learning challenges behind radiomics. In this paper, we first show that the radiomics problem should be viewed as an high dimensional, low sample size, multi view learning problem, then we compare different solutions proposed in multi view learning for classifying radiomics data. Our experiments, conducted on several real world multi view datasets, show that the intermediate integration methods work significantly better than filter and embedded feature selection methods commonly used in radiomics.Comment: conference, 6 pages, 2 figure

    Dynamic voting in multi-view learning for radiomics applications

    Get PDF
    Cancer diagnosis and treatment often require a personalized analysis for each patient nowadays, due to the heterogeneity among the different types of tumor and among patients. Radiomics is a recent medical imaging field that has shown during the past few years to be promising for achieving this personalization. However, a recent study shows that most of the state-of-the-art works in Radiomics fail to identify this problem as a multi-view learning task and that multi-view learning techniques are generally more efficient. In this work, we propose to further investigate the potential of one family of multi-view learning methods based on Multiple Classifiers Systems where one classifier is learnt on each view and all classifiers are combined afterwards. In particular, we propose a random forest based dynamic weighted voting scheme, which personalizes the combination of views for each new patient for classification tasks. The proposed method is validated on several real-world Radiomics problems.Comment: 10 page

    Re-Typograph Phase I: a Proof-of-Concept for Typeface Parameter Extraction from Historical Documents

    Get PDF
    International audienceThis paper reports on the first phase of an attempt to create a full retro-engineering pipeline that aims to construct a complete set of coherent typographic parameters defining the typefaces used in a printed homogenous text. It should be stressed that this process cannot reasonably be expected to be fully automatic and that it is designed to include human interaction. Although font design is governed by a set of quite robust and formal geometric rulesets, it still heavily relies on subjective human interpretation. Furthermore, different parameters, applied to the generic rulesets may actually result in quite similar and visually difficult to distinguish typefaces, making the retro-engineering an inverse problem that is ill conditioned once shape distortions (related to the printing and/or scanning process) come into play. This work is the first phase of a long iterative process, in which we will progressively study and assess the techniques from the state-of-the-art that are most suited to our problem and investigate new directions when they prove to not quite adequate. As a first step, this is more of a feasibility proof-of-concept, that will allow us to clearly pinpoint the items that will require more in-depth research over the next iterations

    Forêt aléatoire pour l'apprentissage multi-vues basé sur la dissimilarité : Application à la Radiomique

    Get PDF
    The work of this thesis was initiated by a Radiomic learning problem. Radiomics is a medical discipline that aims at the large-scale analysis of data from traditional medical imaging to assist in the diagnosis and treatment of cancer. The main hypothesis of this discipline is that by extracting a large amount of information from the images, we can characterize the specificities of this pathology in a much better way than the human eye. To achieve this, Radiomics data are generally based on several types of images and/or several types of features (from images, clinical, genomic). This thesis approaches this problem from the perspective of Machine Learning (ML) and aims to propose a generic solution, adapted to any similar learning problem. To do this, we identify two types of ML problems behind Radiomics: (i) learning from high dimension, low sample size (HDLSS) and (ii) multiview learning. The solutions proposed in this manuscript exploit dissimilarity representations obtained using the Random Forest method. The use of dissimilarity representations makes it possible to overcome the well-known difficulties of learning high dimensional data, and to facilitate the joint analysis of the multiple descriptions, i.e. the views.The contributions of this thesis focus on the use of the dissimilarity easurement embedded in the Random Forest method for HDLSS multi-view learning. In particular, we present three main results: (i) the demonstration and analysis of the effectiveness of this measure for HDLSS multi-view learning; (ii) a new method for measuring dissimilarities from Random Forests, better adapted to this type of learning problem; and (iii) a new way to exploit the heterogeneity of views, using a dynamic combination mechanism. These results have been obtained on radiomic data but also on classical multi-view learning problems.Les travaux de cette thèse ont été initiés par des problèmes d’apprentissage de données radiomiques. La Radiomique est une discipline médicale qui vise l’analyse à grande échelle de données issues d’imageries médicales traditionnelles, pour aider au diagnostic et au traitement des cancers. L’hypothèse principale de cette discipline est qu’en extrayant une grande quantité d’informations des images, on peut caractériser de bien meilleure façon que l’œil humain les spécificités de cette pathologie. Pour y parvenir, les données radiomiques sont généralement constituées de plusieurs types d’images et/ou de plusieurs types de caractéristiques (images, cliniques, génomiques). Cette thèse aborde ce problème sous l’angle de l’apprentissage automatique et a pour objectif de proposer une solution générique, adaptée à tous problèmes d’apprentissage du même type. Nous identifions ainsi en Radiomique deux problématiques d’apprentissage: (i) l’apprentissage de données en grande dimension et avec peu d’instances (high dimension, low sample size, a.k.a.HDLSS) et (ii) l’apprentissage multi-vues. Les solutions proposées dans ce manuscrit exploitent des représentations de dissimilarités obtenues à l’aide des Forêts Aléatoires. L’utilisation d’une représentation par dissimilarité permet de contourner les difficultés inhérentes à l’apprentissage en grande dimension et facilite l’analyse conjointe des descriptions multiples (les vues). Les contributions de cette thèse portent sur l’utilisation de la mesure de dissimilarité embarquée dans les méthodes de Forêts Aléatoires pour l’apprentissage multi-vue de données HDLSS. En particulier, nous présentons trois résultats: (i) la démonstration et l’analyse de l’efficacité de cette mesure pour l’apprentissage multi-vue de données HDLSS; (ii) une nouvelle méthode pour mesurer les dissimilarités à partir de Forêts Aléatoires, plus adaptée à ce type de problème d’apprentissage; et (iii) une nouvelle façon d’exploiter l’hétérogénèité des vues, à l’aide d’un mécanisme de combinaison dynamique. Ces résultats ont été obtenus sur des données radiomiques mais aussi sur des problèmes multi-vue classiques

    Random forest for dissimilarity based multi-view learning : application to radiomics

    No full text
    Les travaux de cette thèse ont été initiés par des problèmes d’apprentissage de données radiomiques. La Radiomique est une discipline médicale qui vise l’analyse à grande échelle de données issues d’imageries médicales traditionnelles, pour aider au diagnostic et au traitement des cancers. L’hypothèse principale de cette discipline est qu’en extrayant une grande quantité d’informations des images, on peut caractériser de bien meilleure façon que l’œil humain les spécificités de cette pathologie. Pour y parvenir, les données radiomiques sont généralement constituées de plusieurs types d’images et/ou de plusieurs types de caractéristiques (images, cliniques, génomiques). Cette thèse aborde ce problème sous l’angle de l’apprentissage automatique et a pour objectif de proposer une solution générique, adaptée à tous problèmes d’apprentissage du même type. Nous identifions ainsi en Radiomique deux problématiques d’apprentissage: (i) l’apprentissage de données en grande dimension et avec peu d’instances (high dimension, low sample size, a.k.a.HDLSS) et (ii) l’apprentissage multi-vues. Les solutions proposées dans ce manuscrit exploitent des représentations de dissimilarités obtenues à l’aide des Forêts Aléatoires. L’utilisation d’une représentation par dissimilarité permet de contourner les difficultés inhérentes à l’apprentissage en grande dimension et facilite l’analyse conjointe des descriptions multiples (les vues). Les contributions de cette thèse portent sur l’utilisation de la mesure de dissimilarité embarquée dans les méthodes de Forêts Aléatoires pour l’apprentissage multi-vue de données HDLSS. En particulier, nous présentons trois résultats: (i) la démonstration et l’analyse de l’efficacité de cette mesure pour l’apprentissage multi-vue de données HDLSS; (ii) une nouvelle méthode pour mesurer les dissimilarités à partir de Forêts Aléatoires, plus adaptée à ce type de problème d’apprentissage; et (iii) une nouvelle façon d’exploiter l’hétérogénèité des vues, à l’aide d’un mécanisme de combinaison dynamique. Ces résultats ont été obtenus sur des données radiomiques mais aussi sur des problèmes multi-vue classiques.The work of this thesis was initiated by a Radiomic learning problem. Radiomics is a medical discipline that aims at the large-scale analysis of data from traditional medical imaging to assist in the diagnosis and treatment of cancer. The main hypothesis of this discipline is that by extracting a large amount of information from the images, we can characterize the specificities of this pathology in a much better way than the human eye. To achieve this, Radiomics data are generally based on several types of images and/or several types of features (from images, clinical, genomic). This thesis approaches this problem from the perspective of Machine Learning (ML) and aims to propose a generic solution, adapted to any similar learning problem. To do this, we identify two types of ML problems behind Radiomics: (i) learning from high dimension, low sample size (HDLSS) and (ii) multiview learning. The solutions proposed in this manuscript exploit dissimilarity representations obtained using the Random Forest method. The use of dissimilarity representations makes it possible to overcome the well-known difficulties of learning high dimensional data, and to facilitate the joint analysis of the multiple descriptions, i.e. the views.The contributions of this thesis focus on the use of the dissimilarity easurement embedded in the Random Forest method for HDLSS multi-view learning. In particular, we present three main results: (i) the demonstration and analysis of the effectiveness of this measure for HDLSS multi-view learning; (ii) a new method for measuring dissimilarities from Random Forests, better adapted to this type of learning problem; and (iii) a new way to exploit the heterogeneity of views, using a dynamic combination mechanism. These results have been obtained on radiomic data but also on classical multi-view learning problems
    corecore