104 research outputs found

    Chromatic assimilation: spread light or neural mechanism?

    Get PDF
    AbstractChromatic assimilation is the shift in color appearance of a test field toward the appearance of nearby light. Possible explanations of chromatic assimilation include wavelength independent spread light, wavelength-dependent chromatic aberration and neural summation. This study evaluated these explanations by measuring chromatic assimilation from a concentric-ring pattern into an equal-energy-white background, as a function of the inducing rings’ width, separation, chromaticity and luminance. The measurements showed, in the s direction, that assimilation was observed with different inducing-ring widths and separations when the inducing luminance was lower or higher than the test luminance. In general, the thinner the inducing rings and the smaller their separation, the stronger the assimilation in s. In the l direction, either assimilation or contrast was observed, depending on the ring width, separation and luminance. Overall, the measured assimilation could not be accounted for by the joint contributions from wavelength-independent spread light and wavelength-dependent chromatic aberration. Spatial averaging of neural signals explained the assimilation in s reasonably well, but there were clear deviations from neural spatial averaging for the l direction

    The role of alcohol response phenotypes in the risk for alcohol use disorder

    Get PDF
    Heavy alcohol use is pervasive and one of our most significant global health burdens. Early theories posited that certain alcohol response phenotypes, notably low sensitivity to alcohol (‘low-level response’) imparts risk for alcohol use disorder (AUD). However, other theories, and newer measures of subjective alcohol responses, have challenged that contention and argued that high sensitivity to some alcohol effects are equally important for AUD risk. This study presents results of a unique longitudinal study in 294 young adult non-dependent drinkers examined with alcohol and placebo testing in the laboratory at initial enrolment and repeated 5 years later, with regular follow-up intervals assessing AUD (trial registration: http://clinicaltrials.gov/ct2/show/NCT00961792). Findings showed that alcohol sedation was negatively correlated with stimulation across the breath alcohol curve and at initial and re-examination testing. A higher rather than lower alcohol response phenotype was predictive of future AUD. The findings underscore a new understanding of factors increasing vulnerability to AUD

    Assessment of #TheDress With Traditional Color Vision Tests: Perception Differences Are Associated With Blueness

    Get PDF
    Based on known color vision theories, there is no complete explanation for the perceptual dichotomy of #TheDress in which most people see either white-and-gold (WG) or blue-and-black (BK). We determined whether some standard color vision tests (i.e., color naming, color matching, anomaloscope settings, unique white settings, and color preferences), as well as chronotypes, could provide information on the color perceptions of #TheDress. Fifty-two young observers were tested. Fifteen of the observers (29%) reported the colors as BK, 21 (40%) as WG, and 16 (31%) reported a different combination of colors. Observers who perceived WG required significantly more blue in their unique white settings than those who perceived BK. The BK, blue-and-gold, and WG observer groups had significantly different color preferences for the light cyan chip. Moreland equation anomaloscope matching showed a significant difference between WG and BK observers. In addition, #TheDress color perception categories, color preference outcomes, and unique white settings had a common association. For both the bright and dark regions of #TheDress, the color matching chromaticities formed a continuum, approximately following the daylight chromaticity locus. Color matching to the bright region of #TheDress showed two nearly distinct clusters (WG vs. BK) along the daylight chromaticity locus and there was a clear cutoff for reporting WG versus BK. All results showing a significant difference involved blue percepts, possibly due to interpretations of the illuminant interactions with the dress material. This suggests that variations in attributing blueness to the #TheDress image may be significant variables determining color perception of #TheDress.Fil: Feitosa-Santana, Claudia. Universidade Federal do ABC; BrasilFil: Lutze, Margaret. Depaul University; Estados UnidosFil: Barrionuevo, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Investigación en Luz, Ambiente y Visión. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Investigación en Luz, Ambiente y Visión; ArgentinaFil: Cao, Dingcai. University of Illinois; Estados Unido

    Non-linearities in the Rod and Cone Photoreceptor Inputs to the Afferent Pupil Light Response

    Get PDF
    Purpose: To assess the nature and extent of non-linear processes in pupil responses using rod- and cone-isolating visual beat stimuli.Methods: A four-primary photostimulating method based on the principle of silent substitution was implemented to generate rod or cone isolating and combined sinusoidal stimuli at a single component frequency (1, 4, 5, 8, or 9 Hz) or a 1 Hz beat frequency (frequency pairs: 4 + 5, 8 + 9 Hz). The component frequencies were chosen to minimize the melanopsin photoresponse of intrinsically photosensitive retinal ganglion cells (ipRGCs) such that the pupil response was primarily driven by outer retinal photoreceptor inputs. Full-field (Ganzfeld) pupil responses and electroretinograms (ERGs) were recorded to the same stimuli at two mesopic light levels (−0.9 and 0 log cd/m2). Fourier analysis was used to derive the amplitudes and phases of the pupil and ERG responses.Results: For the beat frequency condition, when modulation was restricted to the same photoreceptor type at the higher mesopic level (0 log cd/m2), there was a pronounced pupil response to the 1 Hz beat frequency with the 4 + 5 Hz frequency pair and rare beat responses for the 8 + 9 Hz frequency pair. At the lower mesopic level there were few and inconsistent beat responses. When one component modulated the rod excitation and the other component modulated the cone excitation, responses to the beat frequency were rare and lower than the 1 Hz component frequency condition responses. These results were confirmed by ERG recordings.Conclusions: There is non-linearity in both the pupil response and electroretinogram to rod and cone inputs at mesopic light levels. The presence of a beat response for modulation components restricted to a single photoreceptor type, but not for components with cross-photoreceptor types, indicates that the location of a non-linear process in the pupil pathway occurs at a retinal site earlier than where the rod and cone signals are combined, that is, at the photoreceptor level

    Dark-adapted rod suppression of cone flicker detection: Evaluation of receptoral and postreceptoral interactions

    Get PDF
    Dark-adapted rods in the area surrounding a luminance-modulated field can suppress flicker detection. However, the characteristics of the interaction between rods and each of the cone types are unclear. To address this issue, the effect that dark-adapted rods have on specific classes of receptoral and postreceptoral signals was determined by measuring the critical fusion frequencies (CFF) for receptoral L-, M-, and S-cone and postreceptoral luminance ([L+M+S] and [L+M+S+Rod]) and chromatic ([L/L+M]) signals in the presence of different levels of surrounding rod activity. Stimuli were generated with a two-channel photostimulator that has four primaries for a central field and four primaries for the surround, allowing independent control of rod and cone excitation. Measurements were made either with adaptation to the stimulus field after dark adaptation or during a brief period following light adaptation. The results show that dark-adapted rods maximally suppressed the CFF by ~6 Hz for L-cone, M-cone, and luminance modulation. Dark-adapted rods, however, did not significantly alter the S-cone CFF. The [L/L+M] postreceptoral CFF was slightly suppressed at higher surround illuminances, that is, higher than surround luminances resulting in suppression for L-cone, M-cone, or luminance modulation. We conclude that rod-cone interactions in flicker detection occurred strongly in the magnocellular pathway

    The color of night: Surface color perception under dim illuminations

    Get PDF
    Several studies document rudimentary color vision under dim illumination. Here, hue perceptions of paper color samples were determined for a wide range of light levels, including very low light levels where rods alone mediate vision. The appearances of 24 paper color samples from the OSA Uniform Color Scales were gauged under successively dimmer illuminations from 10-0.0003 Lux. Triads of samples were chosen representing each of eight basic color categories; red, pink, orange, yellow, green, blue, purple, and gray. Samples within each triad varied in lightness. Observers sorted samples into groups that they could categorize with specific color names. Above 0.32 Lux, observers sorted the samples into the originally chosen color groups with few exceptions. For 0.1-0.01 Lux, the red and orange samples were usually correctly identified as either red or orange. The remaining samples tended to be grouped into two categories, associated with the scotopic sample reflectance. The lowest reflectance samples were below threshold and were named black. The higher reflectance group was named predominately as green or blue-green three observers; the fourth observer used blue or achromatic. At the three dimmest levels 0.0032 Lux there continued to be conspicuous color percepts. Color categories were reliably assigned based on relative sample scotopic lightness. Of the samples above threshold, those with lower reflectance were classified as red or orange all observers and the higher reflectance samples as green or blue-green three observers or achromatic or blue the fourth observer. Rods and L-cones presumably mediated color percepts at the intermediate light levels used in the study. At the three lowest light levels there were distinct color appearances mediated exclusively by rods. We speculate that at these light levels the visual system estimates probable colors based on prior natural experienc

    Effect of rod-cone interactions on mesopic visual performance mediated by chromatic and luminance pathways

    Get PDF
    We studied the effect of rod–cone interactions on mesopic visual reaction time (RT). Rod and cone photoreceptor excitations were independently controlled using a four-primary photostimulator. It was observed that (1) lateral rod–cone interactions increase the cone-mediated RTs; (2) the rod–cone interactions are strongest when rod sensitivity is maximal in a dark surround, but weaker with increased rod activity in a light surround; and (3) the presence of a dark surround nonselectively increased the mean and variability of chromatic (+L-M, S-cone) and luminance (L+M+S) RTs independent of the level of rod activity. The results demonstrate that lateral rod–cone interactions must be considered when deriving mesopic luminous efficiency using RT

    The Importance of Intrinsically photosensitive retinal ganglion cells and implications for lighting design

    Get PDF
    We reviewed the role of melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) in light-dependent functions, including circadian rhythm that is important for health and visual perception. We then discussed the implications for lighting design.Fil: Cao, Dingcai. University Of Illinois; Estados UnidosFil: Barrionuevo, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucuman. Instituto de Investigacion En Luz, Ambiente y Vision; Argentina. University Of Illinois; Estados Unidos. Universidad Nacional de Tucumán; Argentin

    Estimating photoreceptor excitations from spectral outputs of a personal light exposure measurement device

    Get PDF
    The intrinsic circadian clock requires photoentrainment to synchronize the 24-hour solar day. Therefore, light stimulation is an important component of chronobiological research. Currently, the chronobiological research field overwhelmingly uses photopic illuminance that is based on the luminous efficiency function, V(λ), to quantify light levels. However, recent discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are activated by self-containing melanopsin photopigment and also by inputs from rods and cones, makes light specification using a one-dimensional unit inadequate. Since the current understanding of how different photoreceptor inputs contribute to the circadian system through ipRGCs is limited, it is recommended to specify light in terms of the excitations of five photoreceptors (S-, M-, L-cones, rods and ipRGCs). In the current study, we assessed whether the spectral outputs from a commercially available spectral watch (i.e., Actiwatch Spectrum) could be used to estimate photoreceptor excitations. Based on the color sensor spectral sensitivity functions from a previously published work, as well as from our measurements, we computed spectral outputs in the long-wavelength range (R), middle-wavelength range (G), short-wavelength range (B) and broadband range (W) under 52 CIE illuminants (25 daylight illuminants, 27 fluorescent lights). We also computed the photoreceptor excitations for each illuminant using human spectral sensitivity functions. Linear regression analyses indicated that the Actiwatch spectral outputs could predict photoreceptor excitations reliably, under the assumption of linear responses of the Actiwatch color sensors. In addition, R, G, B outputs could classify illuminant types (fluorescent vs. daylight illuminants) satisfactorily. However, the assessment of actual Actiwatch recording under several testing light sources showed that the spectral outputs were subject to great nonlinearity, leading to less accurate estimation of photoreceptor excitations. Based on our analyses, we recommend that each spectral watch should be calibrated to measure spectral sensitivity functions and linearization characteristics for each sensor to have an accurate estimation of photoreceptor excitations. The method we provided to estimate photoreceptor excitations from the outputs of spectral watches could be used for chronobiological studies that can tolerate an error in the range of 0.2-0.5 log units. Our method can be easily expanded to incorporate linearization functions to have more accurate estimations.Fil: Cao, Dingcai. University Of Illinois; Estados UnidosFil: Barrionuevo, Pablo Alejandro. University Of Illinois; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    • …
    corecore