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Abstract  

 

We studied the effect of rod-cone interactions on mesopic visual reaction time. Rod and cone 

photoreceptor excitations were independently controlled using a four-primary photostimulator. It 

was observed that (1) lateral rod-cone interactions increase the cone-mediated reaction times; (2) 
the rod-cone interactions are strongest when rod sensitivity is maximal in a dark surround, but 

weaker with increased rod activity in a light surround; (3) the presence of a dark surround non-

selectively increased the mean and variability of chromatic (+L-M, S-cone) and luminance 

(L+M+S) reaction times independently of the level of rod activity. The results demonstrate that 

lateral rod-cone interactions must be considered when deriving mesopic luminous efficiency using 

reaction time. 
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1. INTRODUCTION 

Mesopic illuminations span some 3-4 log units in natural viewing environments [1]. The combined 

rod and cone contributions to visual processing under mesopic illuminations result in interactions 

that alter the sensitivity and perceptual qualities of spatial, temporal and chromatic vision [for 

review, see 2]. It is now established that rod signals can access the three primary retinogeniculate 

pathways as demonstrated in psychophysical studies using a 4-primary photostimulator to 

independently control rod and cone excitations [3-6], and from physiological recordings that 

detected rod inputs to parasol ganglion cells in the Magnocellular (MC) pathways of macaque [7-9] 

and rhesus [10], to midget ganglion cells of the Parvocellular (PC) pathway in macaque [8, 9, 11, 

12] and marmoset [13], and to bistratified ganglion cells of the Koniocellular (KC) pathway in 

retina [14, 15] and the lateral geniculate nucleus [9] of macaque [but see 8, 10]. As such, the effect 

of rod-cone interactions on visual processing appears to be closely linked to the change in activity 

of the outer and inner retina in response to the temporal, spatial and spectral properties of the 

stimuli, the illumination level and retinal eccentricity.  

 

Reaction time (RT), as a historical measure of visual performance [16, 17], has been applied to 

understand the photopic temporal response properties of chromatic and achromatic processing [18-

25] and to determine rod and cone latency differences under mesopic illumination [26-30]. Given 

the importance of response speed in many real-world applications, reaction time paradigms are 

currently being investigated as potential methods for deriving mesopic luminous efficiency 

functions [29, 31-34]. To be used in this application, reaction time must be mediated via the MC 

pathway, the candidate physiological substrate of photopic luminous efficiency function V(λ) [35]. 

In their simplest forms, the models assume that mesopic luminous efficiency is described by a 

linear combination of the scotopic and photopic luminous efficiency functions [28, 29], but the 

contribution of chromatic opponent processes to mesopic spectral sensitivity are evident in some 
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conditions [33]. If rod-cone interactions alter visual performance within a given level of adaptation, 

then a system of mesopic photometry based on this method could violate Abney’s law of additivity 

[36].  

 

The effect of lateral rod-cone interactions on visual sensitivity is often studied by comparing the 

difference in sensitivity to a cone-detected stimulus measured after dark and light adaptation when 

the test stimulus is set within a dark surround, a spatial configuration that introduces a maximum 

luminance difference between the test and surround to alter rod and cone sensitivity. In such a 

paradigm, rods are maximally sensitive in the area outside the test field after dark adaptation and 

can suppress cone-mediated temporal processing in the test. The observed lateral rod suppression of 

cone mediated flicker sensitivity is strongest when the test stimuli have high temporal (8-16 Hz) but 

low spatial frequency (1-2 cpd) [37]. The dark-adapted rods in the surrounding field attenuate cone 

mediated temporal contrast sensitivity at frequencies greater than 6-8 Hz [38] and reduce the critical 

fusion frequency by ~6 Hz [39]. While the rod-cone interaction across the test and surround fields 

affects high temporal frequency sensitivity at mesopic light levels, the presence of a luminance 

difference between the test stimulus and surround field also attenuates photopic temporal contrast 

sensitivity at low temporal frequencies [40-43]. It is unknown if a dark surround affects mesopic 

reaction time. 

 

The aim of this study is to examine the change in cone-mediated, mesopic visual performance in the 

presence of various rod and cone activities in the test and surround fields. To do this we use a four-

primary photostimulator [44] to independently control rod signaling (with constant cone excitation) 

and cone signaling (with constant rod excitation) to the inferred MC, PC and KC pathways with a 

range of adapting field chromaticities to determine the change in mean reaction time and the 

variability of reaction time.  
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2. METHODS 

A. Apparatus and calibration procedures 

A four-primary Maxwellian-view photostimulator [44] provided control of the stimulations of the 

rods and three types of cone photoreceptor classes as described in principle by Shapiro, Pokorny 

and Smith [45]. Visual stimuli generated using a four-primary photostimulator are specified with L-

cone, M-cone, S-cone and Rod excitations. We normalize rod excitations so that for a light 

metameric to an equal energy spectrum (EES), 1 photopic Troland (Td) is equal to 1 rod Td [45]. 

The cone chromaticity is described in a relative cone-Troland space, which plots l = L/(L+M) 

versus s = S/(L+M) [46] with a normalization so that l = 0.667 and s = 1.0 for an EES light. Note 

that in a cone-based chromaticity space, luminance is typically specified as (L+M) [46]. Here, we 

used (L+M+S) for cone luminance stimulus specifications because (1) S cones do not contribute to 

V(λ) and, (2) to maintain a constant chromaticity while modulating luminance, S-cone excitation 

needs to be varied in the same proportion and phase as the L- and M-cone excitations. The four-

primary photostimulator can generate isolated photoreceptor excitations (L-cone or M-cone or S-

cone or rod excitations) and postreceptoral signals [luminance, (L+M+S) and (L+M+S+R), and 

chromatic, L/(L+M) and S/(L+M)]. The L+M+S+R stimulus is the combined rod and cone 

luminance stimuli. For example, if a neutral density filter changes luminance then the actual change 

in photoreceptor excitation is L+M+S+R. The four-primary photostimulator can therefore vary 

either cone-mediated luminance (L+M+S) or rod-cone mediated luminance (L+M+S+R).  

 

The primaries are generated using light-emitting diodes (LEDs) combined with narrow band 

interference filters yielding dominant wavelengths of 658 nm (red), 561 nm (greenish yellow), 516 

nm (green) and 459 nm (blue). The centre and surround stimulus fields are imaged in the plane of a 

2 mm artificial pupil. The radiances of the primaries are controlled by amplitude modulation of a 20 
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kHz carrier feeding into an eight-channel, high-definition Firewire Audio preamplifier (M-Audio 

ProFire 2626 PreAmp) with a 24-bit digital-to-analog converter (DAC) operating at a sampling rate 

of 192 kHz.  The output of each DAC is demodulated [47] and sent to a voltage to frequency 

converter that provides 1-µs pulses at frequencies up to 250 kHz to control the LEDs [48]. The 

preamplifier with demodulator has a precision of greater than 16 bits [47]. Stimuli were generated 

using custom engineered software driven by an Apple MacPro QuadCore Intel computer.  

 

We compensated for individual differences in pre-receptoral filtering between the observer and the 

CIE 1964 10° standard observer by completing observer calibration procedures at 7.5° temporal 

eccentricity, the peripheral retinal location of the stimulus field used in the experiments. This 

observer calibration assumes that the photoreceptor spectral sensitivities of the observer at the 

primary wavelengths are approximately linear transforms of the standard observer color matching 

functions, as has been previously demonstrated [44, 49]. This method requires an observer to make 

a photopic color match between two successively presented primary light combinations (459 nm 

and 561 nm matched to 516 nm and 658 nm) by adjusting the luminance of the 459 nm primary (the 

561 nm primary is the reference light), the luminance ratio of the 516 and 658 nm primaries, and 

the combined luminance of the 516 and 658 nm primaries. To estimate the sensitivity difference 

between the individual observer and the 10° standard observer, we compare the relative radiances 

of the four primaries required by the participant at the photopic color match with the theoretical 

values required by the 10° standard observer [44]. Two additional observations confirm the 

observer calibration. In the first, a 500 ms, 30% contrast rod pulse is invisible after photopigment 

bleach and highly conspicuous after dark adaptation. In the second, the cone excitations 

perceptually matching a 1 Hz, 20% contrast rod pedestal are equivalent to a decrease in L/[L+M], 

increase in S/[L+M] and an increase in [L+M] (i.e. the test color appearance is blue-greenish and 

brighter) [3-5]. The physical light calibrations, observer calibration procedures and applications of 

the photostimulator are described in detail elsewhere [3, 6, 44, 50-52].  
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B.  Psychophysical paradigms    

A 2° circular test stimulus was set in a 13° circular surround and a fixation point set the center of 

the test stimulus at 7.5° eccentricity in the temporal retina. The retinal luminance of the test field 

was 2 photopic Td. The data were measured at three adapting chromaticities: One was metameric to 

the equal-energy-spectrum light [EES: l = L/(L+M)=0.667, s = S/(L+M)=1.0; “white” appearing], 

the second had a higher l =L/(L+M) than EES [+l: L/(L+M)=0.70, S/(L+M)=1.0; “red” appearing] 

and the third had a higher S-cone excitation than EES [+s: L/(L+M)=0.667, S/(L+M)=1.1; “blue” 

appearing].  

 

Reaction time was measured in response to the onset of a 1 s rapid-ON sawtooth stimulus specified 

using Weber Contrast [27, 53]. This sawtooth stimulus minimizes adaptation to the incremental 

light [27] and the contrast metric is common to the response characteristics of the pathways 

underlying speeded responses [53]. We do not make direct comparisons between the reaction times 

for stimuli mediated via different pathways because they are measured using different stimulus 

contrast ranges, there are differential sensitivities to the photoreceptor excitation types and the 

irreducible minimums were not determined due to the available instrument contrast gamut. These 

issues have been considered elsewhere [21-24, 53, 54]. 

 

Six photoreceptor or post-receptoral manipulation conditions were studied: (1) L+M+S (variable 

cone luminance with a constant rod excitation and cone chromaticity), (2) L+M+S+R (variable rod-

cone mediated luminance with in phase modulation of rod and cone excitations and a constant cone 

chromaticity), (3) L-cone (variable L cone excitation therefore both cone chromaticity and 

luminance were changing, constant M, S, Rod excitation), (4) +L-M (variable l = L/(L+M), 

constant S, Rod excitation and constant cone luminance), (5) S-cone (variable S cone excitation, 
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constant L, M, Rod excitation and constant cone luminance) and (6) Rod (variable rod excitation, 

constant L, M, S excitation therefore constant cone chromaticity and cone luminance). Depending 

on the stimulus conditions, we measured reaction times for three to five Weber contrasts ranging 

between 5% and 80%. For Observer 2, the S-cone data could only be measured at the highest S-

cone contrast (80% Weber contrast).  

  

To study the effect of rod excitation in the surround (lateral rod-cone interactions) on cone-

mediated visual performance, we generated conditions with three levels of rod activity and two 

surround light levels (light and dark). The spatial properties of the test stimulus field and the rod 

activity levels for each condition are shown in Figure 1. In the control equiluminant surround 

condition (Figure 1, condition A), the baseline rod excitations in the centre and surround fields were 

equal for all test stimuli.  In condition B, the surround field has higher rod excitation than the centre 

field (20% rod surrounding contrast for the +L-M stimuli; 40% rod surrounding contrast for the 

L+M+S and S stimuli). In condition C, cone-mediated reaction time is measured in a dark surround; 

rod sensitivity is maximal in the area outside the stimulus. In condition D, the cone-mediated 

reaction time is measured in a dark surround as per condition C, except that participant’s did not 

dark adapt and light adapted measurements were recorded within 3 min and 30 s after offset of a 7.1 

log Td s bleaching light during cone plateau of the dark adaption curve. The light source for 

bleaching was a 240 V, 150 W tungsten halogen lamp (3108°K) with a DA-Lite video vision 

diffuser (Warsaw, IN) that together produced a light with a correlated colour temperature of 

2889°K. The bleaching light was presented for 70 s to produce a rod bleach of ~77% when 

measured with a 2mm pupil [55]. The effect of rod contrast in the surround is determined by 

comparing cone-mediated reaction times (L+M+S, +L-M and S) measured in the surround field 

with higher rod excitation (Condition B) and the equiluminant control condition (Condition A). The 

effect of lateral dark-adapted rods on the cone-mediated reaction times (L+M+S, +L-M and S) is 

determined by comparison of the data measured with the dark surround after dark adaptation 
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(condition C) and after light adaptation in the bleach condition (condition D). The surround effect is 

determined by comparison of reaction times measured on equiluminant (condition A) and dark 

surrounds (conditions C and D). 

 

C.  Procedure 

Observers completed 30 min dark adaptation prior to all conditions except for the photopigment 

bleach condition (Figure 1D) when data were measured during the cone plateau of the dark 

adaptation curve following extinction of the bleaching light. In a single session, a stimulus 

condition was measured at multiple contrasts. The stimulus conditions were randomized within and 

across sessions. A single run consisted of 30 trials and a minimum of 100 repeats per condition 

were recorded for each stimulus contrast (4-5 runs per stimulus contrast). For the light adaptation 

measurements in Condition D, photopigment bleaching was conducted prior to each 30 trial run and 

there was an average of 4 bleaches conducted during each 1 h session. 

 

In each run, the observers right thumb pressed the reaction time button to increase the illuminance 

of the stimulus field by 40% to minimize the Troxler effect [56] and initiate a random foreperiod (1 

- 5 s) that preceded the onset of the 1 s rapid-ON sawtooth stimulus [27, 53]. The observer was 

under instruction to release their thumb as quickly as possible when stimulus onset was detected. 

Upon releasing the button, a 10 kHz continuous sinusoidal signal was interrupted to produce a 

steady voltage that signaled reaction time, and the illuminance of the stimulus field decreased by 

40%. The response button and pre-amplifier combination produced lag times less than 100 µs, 

which would not affect the measured reaction times [27].  

 

Observers completed extensive practice sessions prior to data collection. Trials with anticipatory 

responses (<100ms) or missed trials (≥ 3000 ms after stimulus onset) were discarded and the 

condition was repeated on the subsequent trial. Reaction times ≥2.5 SD from the mean accounted 
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for less than 3% of the data and were deleted for subsequent analysis [57]. The results report the 

mean reaction times and standard errors exclusive of these outliers. The mean data are described by 

the best-fitting Piéron function of the form 𝑦 = 𝑅𝑇0+ 𝑘𝐶! where B is the exponent, RT0 is the 

asymptotic latency and C represents stimulus contrast.  

 

 

D.  Observers 

Two experienced psychophysical observers (1F, 37 years old; 1M, 29 years old) participated in all 

measurements. Both are normal trichromats as assessed with the Raleigh match and the Farnsworth-

Munsell 100-hue test. The Queensland University of Technology Human Research Ethics 

Committee approved the experimental procedures and the participants provided informed consent.  

 

3. RESULTS 

Figure 2 shows the mean reaction times (± standard error of the mean) measured as a function of 

the Weber contrast of the six stimulus types at three adapting chromaticities (Upper panels: EES; 

Middle panels: “+l”; Lower panels: “+s”) for the two observers (left and right columns). In each 

Figure the symbols code the different stimulus types (Circles: L+M+S; Squares: L+M+S+R; 

Asterisk: L-cone; Upward triangle: +L-M; Downward triangle: S-cone; Diamond: Rod). The +L-M 

data are defined in Weber contrast to facilitate comparison to the other stimulus types. Overall, the 

pattern of reaction time data for the two Observers was similar for all stimulus types and adapting 

chromaticities, with the exception of the S-cone data. The S-cone sensitivity was lower and the S-

cone reaction times were slower for Observer 2 than for Observer 1. All mesopic reaction times 

decreased with increasing stimulus contrast. The averaged Piéron exponent across all stimulus 

types, three adapting chromaticities and two observers was -0.30 (±0.12 SD, range spanning -0.13 

to -0.32). The coefficient of variation (ratio of the standard deviation to the mean) decreased with 



Zele AJ, Maynard ML, Joyce DS, Cao D (2014). Journal of the Optical Society of America A. 31. A7-A14. 
	  	  

	   11 

increasing contrast from 0.26 to 0.06 (i.e. sub Poisson variation) across all stimuli and Weber 

contrasts for the conditions. 	  

 

To evaluate the effect of rod-cone interactions on cone-mediated reaction times, Figure 3 shows the 

reaction times to the highest contrast measured for the L+M+S (upper row), +L-M (middle row) 

and S-cone (lower row) stimuli at the EES adapting chromaticity for conditions A to D from the 

two observers (left and right columns). The effect of surrounding rod contrast on L+M+S, +L-M 

and S-cone reaction time was negligible when compared to the control equiluminant condition 

(conditions B vs. A). Compared to the light bleaching (condition D), dark adaptation (condition C) 

increased the L+M+S reaction times measured on the dark surrounds by an average of 42.5 ms (48 

ms and 37 ms slower for each of the two Observers, respectively). For the +L-M or S-cone reaction 

times measured on the dark surrounds, there were no significant differences in dark or light adapted 

reaction times for Observer 1 (for Observer 2, the S-cone data for this condition were not 

measureable). 

 

Cone-mediated reaction times measured with dark surrounds (conditions C and D) were slower than 

those measured with the equiluminant surround (condition A), irrespective of the level of rod 

activity in dark surround. The L+M+S reaction time was 76.5 ms slower with a dark surround after 

offset of a bleach light than with the equiluminant control condition (67 ms and 86 ms slower for 

each of the two Observers).  Similarly, the +L-M reaction time is 76.5 ms slower with a dark 

surround after bleaching than with the equiluminant surround (51 ms and 102 ms slower for each of 

the two Observers). The mean S-cone reaction time for Observer 1 is 151 ms slower on the dark 

surround after bleaching compared to the equiluminant control condition (for Observer 2, the S-

cone data were not measureable).  The lateral rod-cone interaction further increases the mean 

L+M+S reaction times measured on the dark surround compared to the equiluminant control 

(condition C vs. A). Table 1 indicates that the coefficient of variation for the same stimulus contrast 
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is larger for RT measured with a dark surround (conditions C and D) than with a light surround that 

is equiluminant (condition A) or has higher rod contrast (condition B). 

 

4. Discussion 

This study measured mesopic visual performance using six photoreceptor or post-receptoral 

stimulation conditions designed to target the inferred MC, PC and KC pathways. Reaction times for 

all stimulus conditions decreased with increasing contrast for all adapting chromaticities (Figure 2). 

It was determined that lateral rod-cone interactions act to slow the mean reaction time and are 

strongest for luminance stimuli. In addition, the presence of a dark surround acts to slow the mean 

reaction time, increase the variability of reaction times and is non-selective for luminance and 

chromatic stimuli. This latter effect is also independent of the level of rod activity in the surround.  

 

The effect of rod-cone interactions on visual performance was studied using a paradigm that alters 

the level of rod activity in the surround outside the test stimulus (lateral interactions). The similarity 

of L+M+S and L+M+S+R reaction times measured on the equiluminant surround condition (Figure 

2; condition A) is consistent with comparable rod and cone impulse response functions at this light 

level [27, 50]. The effect of higher surrounding rod excitations on the cone-mediated reaction time 

was also negligible (condition B), indicating that our tested rod contrast cannot alter the cone 

impulse response function, although dark-adapted rods in the surround can change the amplitude 

and timing of the cone impulse response function [38]. On the dark surround conditions, the 

L+M+S reaction times are faster after light adaptation than dark adaptation; if the faster reaction 

time is due to the bleach light increasing the photoreceptor time constants, then the difference will 

be evident in the +L-M and S-cone conditions but this is not the case (Figure 3). Therefore, we infer 

that the increased rod activity in the dark surround generates lateral rod-cone interactions that act to 

slow LMS-cone reaction times by an average of 42.5 ms. This indicates that the effect of lateral 

rod-cone interactions on visual performance is strongest for stimuli mediated via the inferred MC 
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pathway (i.e. L+M+S) with a weak effect on chromatic reaction times mediated via the inferred PC 

(+L-M signaling) and KC pathways (S-cone signaling). It will be necessary however, to examine 

the chromatic rod-cone interactions at higher contrasts to fully quantify the effects of rod-cone 

interactions on chromatic visual performance, but this was not possible within the instrument 

gamut. Our observations for strong suppressive effects of rod-cone interactions on visual 

performance occurring for stimuli mediated via the inferred MC-pathway is therefore consistent 

with the findings of studies of pathway specific effects of lateral rod-cone interactions on the 

critical fusion frequency [39, 50], temporal contrast sensitivity [38], the temporal adaptation 

response [6], and temporal summation [51, 52, 58]. Because the relative strength of the rod signal in 

the post-receptoral pathways is linearly related to rod contrast [4], we anticipate that the strength of 

the interaction will decrease with increasing light level and with lower contrasts [4], but will vary 

with changes in the temporal profile of the rod signal [6] with larger effects at durations less than 

about 75 ms when the rod signal is predominantly mediated via the MC pathway [6]. 

 

The effect of the dark surround (dark adapted and light bleaching conditions) on reaction time was 

non-selective for the luminance (L+M+S) and chromatic (+L-M, S-cone) stimuli and slowed the 

mean reaction times by an average of ~77 ms (Figure 3) and increased the reaction time variability 

(Table 1). It is well known that there is substantial variation within conditions and the distribution 

of reaction times is positively skewed. The coefficient of variations for our measurements is 

consistent with observations that variability generally increases with increases in mean response 

time [59]. We further demonstrate that the spatial structure of the stimulus affects the variability of 

mesopic reaction times to stimuli mediated by the inferred MC, PC and KC pathway. It has long 

been considered that the attenuation in photopic temporal sensitivity at low temporal frequency due 

to luminance differences between the test and surround [40-43] is a property of the retina [41, 60, 

61]. Eye movements however are unlikely to play a role because they enhance low frequency 

sensitivity [61-63]. There may be multiple origins for the slower mesopic reaction times and the 
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increased variability observed on the dark surrounds. Variability will increase with dark surrounds 

due to spontaneous activations of the cone photopigment (dark noise), at least for L-cones, as 

demonstrated in physiological recordings of salamander photoreceptor outer segments [64]. The 

centre-surround receptive field ratio is also lower for cone signalling than for rod, or combined rod 

and cone signalling in macaque MC ganglion cells under mesopic illumination [7] , and so the 

variability due to noise in the dark surround during cone signalling may be higher. If the presence 

of a dark surround introduced uncertainty about the position of the stimulus, then the coefficient of 

variations for our peripheral data should be larger than those determined with photopic, foveated 

data measured on dark surrounds [65] because positional information is more inaccurate in the 

peripheral retina than the fovea [66], but the variance is not dissimilar between the peripheral and 

foveal [65] data. We previously proposed that the principal source of mesopic reaction time 

variability is subsequent to the primary visual cortex [27, 67]; primate magnocellular cell responses 

to moderate and high contrast stimuli are highly repeatable [68-70] as are recordings in areas of V1 

when eye movements are relatively stable, but under natural viewing conditions that allow eye 

movements, the variability in the V1 response is in the order of 6-10 fold higher [71]. It is likely 

spatial context would alter the neural signal accumulation or decision criterion during the perceptual 

decision process to change the variability of the measured reaction time.  

 

Mesopic reaction times depend on the spectral properties of the light when measured with 

broadband [72] and narrow band test stimuli [28] whereas photopic reaction times are independent 

of wavelength for photopically matched stimuli presented on dim backgrounds [19]. This 

differential mesopic sensitivity to wavelength implies mediation via multiple processes [33] 

whereas the photopic data are mediated via a single process, likely via the MC pathway. The two 

spatially dependent processes that slow visual performance may affect real-world visual 

performance in natural scenes illuminated by automobile and street luminaries against darker 

backgrounds. On the other hand, the use of peripherally fixated, small test stimuli set within larger 
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surrounds in laboratory experiments [28, 29, 33, 34] is likely to limit the effect of rod-cone 

interactions that could be present in real-world conditions [e.g. 73], and the two conditions should 

be commensurate if the same luminous efficiency function is to be used in both environments. 

There is a similarity in the rod and S-cone mediated reaction times in one Observer, whereas the rod 

mediated reaction times are slower in the second Observer, and so understanding the role of S-

cones in the mediation of reaction times at short wavelengths where rods have high sensitivity, and 

the origin of the differences in the S-cone reaction times, will be important for determining the 

validity of visual performance as a measure of mesopic spectral sensitivity. As such, there is 

evidence that at low contrasts and with appreciable chromatic signals, mesopic spectral sensitivity 

is better described with a model incorporating opponent +L-M and S-cone signaling [33].  

 

In conclusion, spatial structure is important for controlling the level of rod-cone interactions that act 

to reduce mesopic visual performance. These interactions show selectivity for photoreceptor 

signaling mediated via the inferred MC, PC and KC pathways and defining their contributions to 

mesopic vision will be important for any application of reaction time in the estimation of mesopic 

luminous efficiency. 
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TABLE 

 

 

Table 1. The coefficient of variation of the luminance (LMS) and chromatic (+L-M, S) 

reaction times measured on light and dark surrounds. 

 
  Light surround (A, B)  Dark surround (C, D) 

Stimulus Observer Control +Rod  Dark Bleach 

LMS 

(40%) 

1 0.08 0.08  0.16 0.16 

2 0.11 0.07  0.15 0.12 

+L-M 

(10%) 

1 0.10 0.13  0.12 0.15 

2 0.08 0.06  0.11 0.12 

S (80%) 
1 0.11 0.09  0.19 0.20 

2 0.13 -  0.18 - 
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FIGURE LEGENDS 

 

Fig. 1. Schematic of the spatial configuration used in the four experimental conditions (A-D). In all 

conditions the 2° diameter test field (2 photopic Td) is positioned at 7.5° temporal eccentricity and 

set within a 13° diameter surround field. Condition A: Rod and cone excitations are equal in both 

the centre and surround fields. This is the control equiluminant condition. There are three additional 

conditions with variable levels of rod activity (B, C, D). Condition B: Cone excitations are equal in 

the centre and surround fields but the surround has higher rod excitation than the centre (+L-M = 

20% rod contrast; LMS and S = 40% rod contrast). The surround rod contrast effect is determined 

by comparison of conditions A and B. Condition C: The dark surround generates maximum rod 

sensitivity outside the stimulus area to promote lateral rod-cone interactions. Condition D: Cone 

isolated reaction times measured after offset of a bleach light during the cone plateau of the dark-

adaptation curve. The effect of rod contrast in the surround is determined by comparing condition B 

with the control condition A. The effect of lateral rod-cone interaction is determined by comparison 

of condition C with condition D. The effect of the dark surround is determined by comparison of 

condition A with conditions C and D. 

 

Fig. 2. (Color online) Reaction time data for mesopic rod and cone signaling mediated via the 

inferred MC, PC and KC pathways. All data were measured in condition A shown in Figure 1. The 

left and right columns show the mean reaction time data (± SEM) for two observers measured on 

the equiluminant centre and surround fields that were metameric to an Equal Energy Spectrum 

(EES) (upper row), had higher L/(L+M) (middle row) or higher S-cone excitation (lower row). The 

symbols specify the six photoreceptor excitation conditions: circles (L+M+S: Variable cone 

luminance with a constant rod excitation and cone chromaticity); squares (L+M+S+R: Variable rod 

and cone mediated luminance with in phase modulation of rod and cone excitations and a constant 

cone chromaticity); asterisks (L-cone: Variable L cone excitation therefore both cone chromaticity 
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and luminance were changing, constant M, S, Rod excitation); upward triangles (+L-M: Variable l 

= L/(L+M), constant S, Rod excitation and constant cone luminance); downward triangles (S-cone: 

Variable S cone excitation, constant L, M, Rod excitation and constant cone luminance); diamonds 

(Rod: Variable rod excitation, constant L, M, S excitation therefore constant cone chromaticity and 

cone luminance). The solid lines show the best-fitting Piéron functions. 

 

Fig. 3. (Color online) The effect of rod-cone interactions on cone-mediated luminance and 

chromatic reaction time. The left and right columns show the mean reaction time data (+ SEM) for 

the two observers at the maximum stimulus contrast measured for the L+M+S stimulus (upper 

row), the +L-M stimulus (middle row) and the S-cone stimulus (lower row). Data are for the EES 

adapting chromaticity. The labels and schematics A-D identify the four experimental conditions 

defined in Figure 1. 
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Figure 1. 
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Figure 2. 
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Figure 3.  

 

 

 

 


