775 research outputs found

    Single-Cell Transcriptional Analysis of Neuronal Progenitors

    Get PDF
    AbstractThe extraordinary cellular heterogeneity of the mammalian nervous system has largely hindered the molecular analysis of neuronal identity and diversity. In order to uncover mechanisms involved in neuronal differentiation and diversification, we have monitored the expression profiles of individual neurons and progenitor cells collected from dissociated tissue or captured from intact slices. We demonstrate that this technique provides a sensitive and reproducible representation of the single-cell transcriptome. In the olfactory system, hundreds of transcriptional differences were identified between olfactory progenitors and mature sensory neurons, enabling us to define the large variety of signaling pathways expressed by individual progenitors at a precise developmental stage. Finally, we show that regional differences in gene expression can be predicted from transcriptional analysis of single neuronal precursors isolated by laser capture from defined areas of the developing brain

    Photoluminescence properties of GaN grown on compliant silicon-on-insulator substrates

    Full text link
    A compliant substrate approach has been employed to release lattice-mismatch caused strain in GaN epilayers through stress absorption in the substrate. GaN layers have been grown on silicon-on-insulator (SOI) substrates by low-pressure metalorganic chemical vapor deposition. Photoluminescence measurements at 4 K show the spectrum of grown GaN being dominated by UV emission around 3.47 eV related to neutral-donor bound excitons. The much weaker yellow luminescence shows a broad spectrum around 2.16 eV. Peak position of the UV emission changes both with measurement temperature and strain. At room temperature, the UV peak is red shifted by 64 meV corresponding well to the band-gap temperature dependence. Strain-induced blue shift of the peak, compared to unstrained GaN, is much less than for growth on sapphire, indicating strain relief in the GaN by growth on SOI. Further reduction of the blue shift is consistent with increased electron mobility. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70808/2/APPLAB-71-26-3880-1.pd

    Intracellular DNA Damage by Lysine-Acetylene Conjugates

    Get PDF
    Previously, we reported the design and properties of alkyne C-lysine conjugates, a powerful and tunable family of DNA cleaving reagents. We also reported that, upon photoactivation, these molecules are capable of inducing cancer cells death. To prove that the cell death stems from DNA cleavage by the conjugates, we investigated intracellular DNA damage induced by these molecules in LNCap cancer cells using single cell gel electrophoresis (SCGE) assays. The observation of highly efficient DNA damage confirmed that lysine acetylene conjugate is capable of cleaving the densely compacted intracellular DNA. This result provides a key mechanistic link between efficient DNA cleavage and cytotoxicity towards cancer cells for this family of light-activated anticancer agents

    Vocal markers from sustained phonation in Huntington's Disease

    Get PDF
    Disease-modifying treatments are currently assessed in neurodegenerative diseases. Huntington's Disease represents a unique opportunity to design automatic sub-clinical markers, even in premanifest gene carriers. We investigated phonatory impairments as potential clinical markers and propose them for both diagnosis and gene carriers follow-up. We used two sets of features: Phonatory features and Modulation Power Spectrum Features. We found that phonation is not sufficient for the identification of sub-clinical disorders of premanifest gene carriers. According to our regression results, Phonatory features are suitable for the predictions of clinical performance in Huntington's Disease.Comment: To appear at INTERSPEECH 2020. 1 pages of supplementary material appear only in the arxiv version. Code to replicate https://github.com/bootphon/sustained-phonation-feature

    Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency

    Get PDF
    Apoptosis represents a key anti-cancer therapeutic effector mechanism. During apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically kills cells even in the absence of caspase activity. Caspase activity can also have a variety of unwanted consequences that include DNA damage. We therefore investigated whether MOMP-induced caspase-independent cell death (CICD) might be a better way to kill cancer cells. We find that cells undergoing CICD display potent pro-inflammatory effects relative to apoptosis. Underlying this, MOMP was found to stimulate NF-κB activity through the downregulation of inhibitor of apoptosis proteins. Strikingly, engagement of CICD displays potent anti-tumorigenic effects, often promoting complete tumour regression in a manner dependent on intact immunity. Our data demonstrate that by activating NF-κB, MOMP can exert additional signalling functions besides triggering cell death. Moreover, they support a rationale for engaging caspase-independent cell death in cell-killing anti-cancer therapies

    Genome maps across 26 human populations reveal population-specific patterns of structural variation.

    Get PDF
    Large structural variants (SVs) in the human genome are difficult to detect and study by conventional sequencing technologies. With long-range genome analysis platforms, such as optical mapping, one can identify large SVs (>2 kb) across the genome in one experiment. Analyzing optical genome maps of 154 individuals from the 26 populations sequenced in the 1000 Genomes Project, we find that phylogenetic population patterns of large SVs are similar to those of single nucleotide variations in 86% of the human genome, while ~2% of the genome has high structural complexity. We are able to characterize SVs in many intractable regions of the genome, including segmental duplications and subtelomeric, pericentromeric, and acrocentric areas. In addition, we discover ~60 Mb of non-redundant genome content missing in the reference genome sequence assembly. Our results highlight the need for a comprehensive set of alternate haplotypes from different populations to represent SV patterns in the genome

    Different impacts of resources on opposite sex ratings of physical attractiveness by males and females

    Get PDF
    This work was supported by National Natural Science Foundation of China (NSFC grant 91431102) and International Cooperation Program of Chinese Academy of Sciences (GJHZ1660). John R. Speakman was supported by the 1000 talents program of the Chinese government and a Wolfson merit award from the Royal Society. Guanlin Wang was awarded by the UCAS-UoA dual degree PhD training Program.Peer reviewedPostprin

    Characterisation of Translation Elongation Factor eEF1B Subunit Expression in Mammalian Cells and Tissues and Co-Localisation with eEF1A2

    Get PDF
    Translation elongation is the stage of protein synthesis in which the translation factor eEF1A plays a pivotal role that is dependent on GTP exchange. In vertebrates, eEF1A can exist as two separately encoded tissue-specific isoforms, eEF1A1, which is almost ubiquitously expressed, and eEF1A2, which is confined to neurons and muscle. The GTP exchange factor for eEF1A1 is a complex called eEF1B made up of subunits eEF1Bα, eEF1Bδ and eEF1Bγ. Previous studies have cast doubt on the ability of eEF1B to interact with eEF1A2, suggesting that this isoform might use a different GTP exchange factor. We show that eEF1B subunits are all widely expressed to varying degrees in different cell lines and tissues, and at different stages of development. We show that ablation of any of the subunits in human cell lines has a small but significant impact on cell viability and cycling. Finally, we show that both eEF1A1 and eEF1A2 colocalise with all eEF1B subunits, in such close proximity that they are highly likely to be in a complex

    Hyporheic invertebrates as bioindicators of ecological health in temporary rivers: a meta-analysis

    Get PDF
    Worldwide, many rivers cease flow and dry either naturally or owing to human activities such as water extraction. However, even when surface water is absent, diverse assemblages of aquatic invertebrates inhabit the saturated sediments below the river bed (hyporheic zone). In the absence of surface water or flow, biota of this zone may be sampled as an alternative to surface water-based ecological assessments. The potential of hyporheic invertebrates as ecological indicators of river health, however, is largely unexplored. We analysed hyporheic taxa lists from the international literature on temporary rivers to assess compositional similarity among broad-scale regions and sampling conditions, including the presence or absence of surface waters and flow, and the regional effect of hydrological phase (dry channel, non-flowing waters, surface flow) on richness. We hypothesised that if consistent patterns were found, then effects of human disturbances in temporary rivers may be assessable using hyporheic bioindicators. Assemblages differed geographically and by climate, but hydrological phase did not have a strong effect at the global scale. However, hyporheic assemblage composition within regions varied along a gradient of higher richness during wetter phases

    Clinical heterogeneity associated with KCNA1 mutations include cataplexy and nonataxic presentations

    Get PDF
    Mutations in the KCNA1 gene are known to cause episodic ataxia/myokymia syndrome type 1 (EA1). Here, we describe two families with unique presentations who were enrolled in an IRB-approved study, extensively phenotyped, and whole exome sequencing (WES) performed. Family 1 had a diagnosis of isolated cataplexy triggered by sudden physical exertion in multiple affected individuals with heterogeneous neurological findings. All enrolled affected members carried a KCNA1 c.941T>C (p.I314T) mutation. Family 2 had an 8-year-old patient with muscle spasms with rigidity for whom WES revealed a previously reported heterozygous missense mutation in KCNA1 c.677C>G (p.T226R), confirming the diagnosis of EA1 without ataxia. WES identified variants in KCNA1 that explain both phenotypes expanding the phenotypic spectrum of diseases associated with mutations of this gene. KCNA1 mutations should be considered in patients of all ages with episodic neurological phenotypes, even when ataxia is not present. This is an example of the power of genomic approaches to identify pathogenic mutations in unsuspected genes responsible for heterogeneous diseases
    corecore