1,242 research outputs found

    Local dynamics and gravitational collapse of a self-gravitating magnetized Fermi gas

    Full text link
    We use the Bianchi-I spacetime to study the local dynamics of a magnetized self-gravitating Fermi gas. The set of Einstein-Maxwell field equations for this gas becomes a dynamical system in a 4-dimensional phase space. We consider a qualitative study and examine numeric solutions for the degenerate zero temperature case. All dynamic quantities exhibit similar qualitative behavior in the 3-dimensional sections of the phase space, with all trajectories reaching a stable attractor whenever the initial expansion scalar H_{0} is negative. If H_{0} is positive, and depending on initial conditions, the trajectories end up in a curvature singularity that could be isotropic(singular "point") or anisotropic (singular "line"). In particular, for a sufficiently large initial value of the magnetic field it is always possible to obtain an anisotropic type of singularity in which the "line" points in the same direction of the field.Comment: 6 pages, 3 figures (accepted in General Relativity and Gravitation

    Pseudospectral versus finite-differences schemes in the numerical integration of stochastic models of surface growth

    Full text link
    We present a comparison between finite differences schemes and a pseudospectral method applied to the numerical integration of stochastic partial differential equations that model surface growth. We have studied, in 1+1 dimensions, the Kardar, Parisi and Zhang model (KPZ) and the Lai, Das Sarma and Villain model (LDV). The pseudospectral method appears to be the most stable for a given time step for both models. This means that the time up to which we can follow the temporal evolution of a given system is larger for the pseudospectral method. Moreover, for the KPZ model, a pseudospectral scheme gives results closer to the predictions of the continuum model than those obtained through finite difference methods. On the other hand, some numerical instabilities appearing with finite difference methods for the LDV model are absent when a pseudospectral integration is performed. These numerical instabilities give rise to an approximate multiscaling observed in the numerical simulations. With the pseudospectral approach no multiscaling is seen in agreement with the continuum model.Comment: 13 single column pages, RevTeX, 6 eps fig

    Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation

    Full text link
    We study numerically the Kuramoto-Sivashinsky (KS) equation forced by external white noise in two space dimensions, that is a generic model for e.g. surface kinetic roughening in the presence of morphological instabilities. Large scale simulations using a pseudospectral numerical scheme allow us to retrieve Kardar-Parisi-Zhang (KPZ) scaling as the asymptotic state of the system, as in the 1D case. However, this is only the case for sufficiently large values of the coupling and/or system size, so that previous conclusions on non-KPZ asymptotics are demonstrated as finite size effects. Crossover effects are comparatively stronger for the 2D case than for the 1D system.Comment: 5 pages, 3 figures; supplemental material available at journal web page and/or on reques

    Vertical Diffusivities of Active and Passive Tracers

    Get PDF
    The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and Rq (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: (a) The passive tracer diffusivity is an algebraic function of Ri, Rq. (b) In doubly stable regimes (DS, partial derivative of T with respect to z > 0, partial derivative of S with respect to z 0. (c) In DC regimes (diffusive convection, partial derivative of T with respect to z 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. (d) In SF regimes (salt fingers, partial derivative of T with respect to z > 0, partial derivative of S with respect to z > 0, Rq < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. (e) The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. (f) Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO2 absorption, the dominant regime is diffusive convection discussed in (c) above

    Theoretical study of turbulent channel flow: Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Get PDF
    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr--Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O--S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend stongly on the structure of the turbulence spectrun at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel

    A Comparison of Measured Crab and Vela Glitch Healing Parameters with Predictions of Neutron Star Models

    Full text link
    There are currently two well-accepted models that explain how pulsars exhibit glitches, sudden changes in their regular rotational spin-down. According to the starquake model, the glitch healing parameter, Q, which is measurable in some cases from pulsar timing, should be equal to the ratio of the moment of inertia of the superfluid core of a neutron star (NS) to its total moment of inertia. Measured values of the healing parameter from pulsar glitches can therefore be used in combination with realistic NS structure models as one test of the feasibility of the starquake model as a glitch mechanism. We have constructed NS models using seven representative equations of state of superdense matter to test whether starquakes can account for glitches observed in the Crab and Vela pulsars, for which the most extensive and accurate glitch data are available. We also present a compilation of all measured values of Q for Crab and Vela glitches to date which have been separately published in the literature. We have computed the fractional core moment of inertia for stellar models covering a range of NS masses and find that for stable NSs in the realistic mass range 1.4 +/- 0.2 solar masses, the fraction is greater than 0.55 in all cases. This range is not consistent with the observational restriction Q < 0.2 for Vela if starquakes are the cause of its glitches. This confirms results of previous studies of the Vela pulsar which have suggested that starquakes are not a feasible mechanism for Vela glitches. The much larger values of Q observed for Crab glitches (Q > 0.7) are consistent with the starquake model predictions and support previous conclusions that starquakes can be the cause of Crab glitches.Comment: 8 pages, including 3 figures and 1 table. Accepted for publication in Ap

    Uncertainties of Synthetic Integrated Colors as Age Indicators

    Get PDF
    We investigate the uncertainties in the synthetic integrated colors of simple stellar populations. Three types of uncertainties are from the stellar models, the population synthesis techniques, and from the spectral libraries. Despite some skepticism, synthetic colors appear to be reliable age indicators when used for select age ranges. Rest-frame optical colors are good age indicators at ages 2 -- 7Gyr. At ages sufficiently large to produce hot HB stars, the UV-to-optical colors provide an alternative means for measuring ages. This UV technique may break the age-metallicity degeneracy because it separates old populations from young ones even in the lack of metallicity information. One can use such techniques on extragalactic globular clusters and perhaps even for high redshift galaxies that are passively evolving to study galaxy evolution history.Comment: 38 pages, 21 figures, LaTex, 2003, ApJ, 582 (Jan 1), in pres

    Effect of convective outer layers modeling on non-adiabatic seismic observables of delta Scuti stars

    Full text link
    The identification of pulsation modes in delta Scuti stars is mandatory to constrain the theoretical stellar models. The non-adiabatic observables used in the photometric identification methods depend, however,on convection modeling in the external layers. Our aim is to determine how the treatment of convection in the atmospheric and sub-atmospheric layers affects the mode identification, and what information about the thermal structure of the external layers can be obtained from amplitude ratios and phase lags in Str\"omgren photometric bands. We derive non-adiabatic parameters for delta Scuti stars by using, for the first time, stellar models with the same treatment of convection in the interior and in the atmosphere. We compute classical non-gray mixing length models, and as well non-gray ``Full Spectrum of Turbulence'' models. Furthermore, we compute the photometric amplitudes and phases of pulsation by using the colors and the limb-darkening coefficents as derived from the same atmosphere models used in the stellar modeling. We show that the non-adiabatic phase-lag is mainly sensitive to the thermal gradients in the external layers, (and hence to the treatment of convection), and that this sensitivity is also clearly reflected in the multi-color photometric phase differences.Comment: 14 pag. 19 figs. accepted for publication in Astronomy and Astrophysic

    Compostos clorados: aspectos gerais e sua utilização como agente sanitizante na agricultura, micropropagação e pecuária.

    Get PDF
    Compostos clorados; Modo de ação dos compostos clorados; Fatores que Influenciam no processo de desinfecção; Utilizando compostos clorados; Tipos de compostos clorados e sua utilização; Compostos clorados de origemHipoclorito de sódio; Aspectos negativos mais comuns da utilização de compostos clorados como agentes sanitizantes e como contorná-los; Utilização de compostos clorados como agentes sanitizantes na agricultura; Utilização de compostos clorados como agentes sanitizantes na pecuária; Utilização de compostos clorados como agentes sanitizantes na micropropagação.bitstream/CPATSA/37828/1/SDC207.pd
    corecore