15 research outputs found

    Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies

    No full text
    The first measurements of skewness and kurtosis of mean transverse momentum (〈pT〉) fluctuations are reported in Pb–Pb collisions at sNN = 5.02 TeV, Xe–Xe collisions at sNN = 5.44 TeV and pp collisions at s=5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size 〈dNch/dη〉|η|<0.51/3, using charged particles with transverse momentum (pT) and pseudorapidity (η), in the range 0.2<pT<3.0 GeV/c and |η|<0.8, respectively. In Pb–Pb and Xe–Xe collisions, positive skewness is observed in the fluctuations of 〈pT〉 for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of 〈pT〉 fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb–Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb–Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions

    Measurement of the fraction of jet longitudinal momentum carried by <math display="inline"><msubsup><mi mathvariant="normal">Λ</mi><mi>c</mi><mo>+</mo></msubsup></math> baryons in <math display="inline"><mi>p</mi><mi>p</mi></math> collisions

    No full text
    International audienceRecent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λc+ baryons, z∥ch, in hadronic collisions. The results are obtained in proton-proton (pp) collisions at s=13  TeV at the LHC, with Λc+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3≤pTΛc+&lt;15  GeV/c and 7≤pTjet ch&lt;15  GeV/c, respectively. The z∥ch distribution is compared to a measurement of D0-tagged charged jets in pp collisions as well as to pythia 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by hadronization models which include color correlations beyond leading-color in the string formation

    System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider

    No full text
    International audienceThe first measurements of K*(892)0 resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at sNN=5.44 TeV and pp collisions ats=5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (|y| &lt; 0.5) using the hadronic decay channel K*0 →K±π∓. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K*0, and yield ratios of resonance to stable hadron (K*0/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K*0 resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of K*0 in Xe-Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using the hadron resonance gas–partial chemical equilibrium model

    Pseudorapidity dependence of anisotropic flow and its decorrelations using long-range multiparticle correlations in Pb–Pb and Xe–Xe collisions

    No full text
    The pseudorapidity dependence of elliptic (v2), triangular (v3), and quadrangular (v4) flow coefficients of charged particles measured in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of sNN=5.02TeV and in Xe–Xe collisions at sNN=5.44TeV with ALICE at the LHC are presented. The measurements are performed in the pseudorapidity range −3.5<η<5 for various centrality intervals using two- and multi-particle cumulants with the subevent method. The flow probability density function (p.d.f.) is studied with the ratio of flow coefficient v2 calculated with four- and two-particle cumulant, and suggests that the variance of flow p.d.f. is independent of pseudorapidity. The decorrelation of the flow vector in the longitudinal direction is probed using two-particle correlations. The results measured with respect to different reference regions in pseudorapidity exhibit differences, argued to be a result of saturating decorrelation effect above a certain pseudorapidity separation, in contrast to previous publications which assign this observation to non-flow effects. The results are compared to 3+1 dimensional hydrodynamic and the AMPT transport model calculations. Neither of the models is able to simultaneously describe the pseudorapidity dependence of measurements of anisotropic flow and its fluctuations. The results presented in this work highlight shortcomings in our current understanding of initial conditions and subsequent system expansion in the longitudinal direction. Therefore, they provide input for its improvement

    Measurement of the radius dependence of charged-particle jet suppression in Pb–Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The ALICE Collaboration reports a new differential measurement of inclusive jet suppression using pp and Pb–Pb collision data at center-of-mass energy per nucleon–nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. Charged-particle jets are reconstructed using the anti-kTk_{\rm T} algorithm with resolution parameters RR = 0.2, 0.3, 0.4, 0.5, and 0.6 in pp collisions and RR = 0.2, 0.4, 0.6 in central (0–10\%), semi-central (30–50\%), and peripheral (60–80\%) Pb–Pb collisions. The analysis uses a novel approach based on machine learning to mitigate the influence of jet background in central heavy-ion collisions, which enables measurements of inclusive jet suppression for jet pT40p_{\rm T} \ge 40 GeV/cc in central collisions at a resolution parameter of RR = 0.6. This is the lowest value of jet pTp_{\rm T} achieved for inclusive jet measurements at RR = 0.6 at the LHC, and is an important step for discriminating different models of jet quenching in the quark-gluon plasma. The transverse momentum spectra, nuclear modification factors, and derived cross section and nuclear modification factor ratios for different jet resolution parameters of charged-particle jets are presented and compared to model predictions. A mild dependence of the nuclear modification factor ratios on collision centrality and resolution parameter is observed. The results are compared to a variety of jet quenching models with varying levels of agreement, demonstrating the effectiveness of this observable to discriminate between models.The ALICE Collaboration reports a new differential measurement of inclusive jet suppression using pp and Pb-Pb collision data at center-of-mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. Charged-particle jets are reconstructed using the anti-kTk_{\rm T} algorithm with resolution parameters R=R = 0.2, 0.3, 0.4, 0.5, and 0.6 in pp collisions and R=R = 0.2, 0.4, 0.6 in central (0-10%), semi-central (30-50%), and peripheral (60-80%) Pb-Pb collisions. The analysis uses a novel approach based on machine learning to mitigate the influence of jet background in central heavy-ion collisions, which enables measurements of inclusive jet suppression for jet pT40p_{\rm T} \geq 40 GeV/cc in central collisions at a resolution parameter of R=0.6R = 0.6. This is the lowest value of jet pTp_{\rm T} achieved for inclusive jet measurements at R=0.6R=0.6 at the LHC, and is an important step for discriminating different models of jet quenching in the quark-gluon plasma. The transverse momentum spectra, nuclear modification factors, and derived cross section and nuclear modification factor ratios for different jet resolution parameters of charged-particle jets are presented and compared to model predictions. A mild dependence of the nuclear modification factor ratios on collision centrality and resolution parameter is observed. The results are compared to a variety of jet quenching models with varying levels of agreement, demonstrating the effectiveness of this observable to discriminate between models

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s = 13 TeV and in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s√=13 TeV and p−Pb collisions at sNN−−−√=5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle Δφ and pseudorapidity separation Δη for pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum interval 1<pT<4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6<|Δη|<1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events

    Systematic study of flow vector decorrelation in sNN=5.02\mathbf{\sqrt{\textit{s}_{_{\bf NN}}}=5.02} TeV Pb--Pb collisions

    No full text
    Measurements of the pTp_{\rm T}-dependent flow vector fluctuations in Pb--Pb collisions at sNN=5.02 TeV\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV} using azimuthal correlations with the ALICE experiment at the LHC are presented. A four-particle correlation approach [1] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pTp_{\rm T}-dependent flow vector fluctuations at sNN=5.02 TeV\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV} with two-particle correlations. Significant pTp_{\rm T}-dependent fluctuations of the V2\vec{V}_{2} flow vector in Pb--Pb collisions are found across different centrality ranges, with the largest fluctuations of up to \sim15% being present in the 5% most central collisions. In parallel, no evidence of significant pTp_{\rm T}-dependent fluctuations of V3\vec{V}_{3} or V4\vec{V}_{4} is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5σ5\sigma significance in central collisions. These observations in Pb--Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pTp_{\rm T}, which might be biased by pTp_{\rm T}-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be re-examined to improve our understanding of initial conditions, quark--gluon plasma (QGP) properties, and the dynamic evolution of the created system.Measurements of the pT-dependent flow vector fluctuations in Pb–Pb collisions at sNN=5.02TeV using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, Phys. Rev. C 107, L051901 (2023)] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pT-dependent flow vector fluctuations at sNN=5.02TeV with two-particle correlations. Significant pT-dependent fluctuations of the V⃗2 flow vector in Pb–Pb collisions are found across different centrality ranges, with the largest fluctuations of up to ∼15% being present in the 5% most central collisions. In parallel, no evidence of significant pT-dependent fluctuations of V⃗3 or V⃗4 is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5σ significance in central collisions. These observations in Pb–Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pT, which might be biased by pT-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark–gluon plasma properties, and the dynamic evolution of the created system.Measurements of the pTp_{\rm T}-dependent flow vector fluctuations in Pb-Pb collisions at sNN=5.02 TeV\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV} using azimuthal correlations with the ALICE experiment at the LHC are presented. A four-particle correlation approach [1] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pTp_{\rm T}-dependent flow vector fluctuations at sNN=5.02 TeV\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV} with two-particle correlations. Significant pTp_{\rm T}-dependent fluctuations of the V2\vec{V}_{2} flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to \sim15% being present in the 5% most central collisions. In parallel, no evidence of significant pTp_{\rm T}-dependent fluctuations of V3\vec{V}_{3} or V4\vec{V}_{4} is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5σ5\sigma significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pTp_{\rm T}, which might be biased by pTp_{\rm T}-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be re-examined to improve our understanding of initial conditions, quark--gluon plasma (QGP) properties, and the dynamic evolution of the created system

    Prompt and non-prompt J/ψ/\psi production at midrapidity in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe transverse momentum (pTp_{\rm T}) and centrality dependence of the nuclear modification factor RAAR_{\rm AA} of prompt and non-prompt J/ψ/\psi, the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV. The measurements are carried out through the e+e{\rm e}^{+}{\rm e}^{-} decay channel at midrapidity (y|y| 5 GeV/cc, which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlapping pTp_{\rm T} intervals, and cover the kinematic region down to pTp_{\rm T} = 1.5 GeV/cc at midrapidity, not accessible by other LHC experiments. The suppression of prompt J/ψ/\psi in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J/ψ/\psi production from recombination of c and c\overline{\rm c} quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J/ψ/\psi. For non-prompt J/ψ/\psi, the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark-gluon plasma is consistent with measurements within uncertainties

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    International audienceThe Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=\sqrt{s_{\mathrm{NN}}}= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2v_{2}) and triangular (v3v_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Normr_{3}^{\rm Norm} is found to be larger than zero and to have a magnitude similar to r2Normr_{2}^{\rm Norm}, thus pointing to a large background contribution for these measurements. Furthermore, r2Normr_{2}^{\rm Norm} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMWf_{\rm CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMWf_{\rm CMW}, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level

    Measurement of inclusive charged-particle jet production in pp and p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceMeasurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV and the corresponding nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} are presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region ηjet<0.5|\eta_{\rm jet}| < 0.5 from charged particles using the anti-kTk_{\rm T} algorithm with resolution parameters R=0.2R = 0.2, 0.3, and 0.4. The pTp_{\rm T}-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross-section ratios, are reported for pp and p-Pb collisions in the transverse momentum range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc and 10<pT,jetch<16010 < p^{\rm ch}_{\rm T,jet} < 160 GeV/cc, respectively, together with the nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} in the range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc. The analysis extends the pTp_{\rm T} range of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD POWHEG calculations with parton shower provided by PYTHIA8 as well as by JETSCAPE simulations
    corecore