74 research outputs found

    CARS Data Analys Procedure

    Get PDF

    Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    Get PDF
    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-5510(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown

    EDX Remote Detection on NATO SET-237 Samples

    Get PDF
    Ultraviolet Raman spectroscopy measurements have been performed at DLR Lampoldshausen to detect NATO SET-237 standard samples of RDX. The goal was to quantify the minimum requirements for an unambiguous identification in remote detection (60 cm distance) arrangement using simple and robust spectroscopic equipment on well-defined distribution of explosives on surfaces. Therefore, Raman spectra of RDX have been acquired for different sample concentrations (50, 250, and 1000 μg/cm2 respectively) and under several laser energies (1.5, 3.0 and 5.0 mJ/pulse respectively) at 355 nm excitation wavelength. The lowest producible surface concentration (50 µg/cm2) was detected with excitation energy of 3 mJ/pulse in the described configuration. The presented Raman spectra are also discussed in terms of future applications

    Remote Raman Spectroscopy of Explosive Precursors

    Get PDF
    Deep ultraviolet Raman spectroscopy measurements have been performed at the German Aerospace Center (DLR) with the aim of detecting traces (µg range) of explosive precursors. In this study a backscattering Raman system was set up and optimized to detect urea, sodium perchlorate, ammonium nitrate, and sodium nitrate at a 60 cm short-range remote detection. Sample were tested at 264 nm ultraviolet laser excitation wavelength to experimentally observe any possible trace over textiles samples. For each colored sample textile, Raman spectra were acquired and no background fluorescence interference was observed at this laser excitation wavelength. Detection limits and system sensitivity with an acquisition times up to 3 seconds for microgram traces are presented

    RDX Remote Raman Detection on NATO SET-237 Samples

    Get PDF
    Ultraviolet Raman spectroscopy measurements have been performed at DLR Lampoldshausen to detect NATO SET-237 standard samples of RDX. The main goal was to quantify the minimum requirements for an unambiguous identification in remote detection (60 cm distance) with a commercial Czerny-Turner spectrometer coupled with a CCD camera. Well-defined distribution of explosives on surfaces were tested as standardized samples. Therefore, Raman spectra of RDX have been acquired for different sample concentrations (50, 250, and 1000 μg/cm2 respectively) and under several laser energies (1.5, 3.0 and 5.0 mJ/pulse respectively) at 355 nm excitation wavelength. The lowest possible reproducible surface concentration (50 µg/cm2) was detected with excitation energy of 3 mJ/pulse in the described configuration

    Dual-Pump CARS Measurements in the University of Virginia's Dual-Mode Scramjet: Configuration "C"

    Get PDF
    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility in configuration C of the dual-mode scramjet. This is a continuation of previously published works on configuration A. The scramjet is hydrogen fueled and operated at two equivalence ratios, one representative of the scram mode and the other of the ram mode. Dual-pump CARS was used to acquire the mole fractions of the major species as well as the rotational and vibrational temperatures of N2. Developments in methods and uncertainties in fitting CARS spectra for vibrational temperature are discussed. Mean quantities and the standard deviation of the turbulent fluctuations at multiple planes in the flow path are presented. In the scram case the combustion of fuel is completed before the end of the measurement domain, while for the ram case the measurement domain extends into the region where the flow is accelerating and combustion is almost completed. Higher vibrational than rotational temperature is observed in those parts of the hot combustion plume where there is substantial H2 (and hence chemical reaction) present

    Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS

    Get PDF
    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium

    Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes

    Get PDF
    UNLABELLED For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. IMPORTANCE The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease

    OH PLIF Visualization of a Premixed Ethylene-fueled Dual-Mode Scramjet Combustor

    Get PDF
    Hydroxyl radical (OH) planar induced laser fluorescence (PLIF) measurements have been performed in a small-scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 enthalpy. OH lines were carefully chosen to have fluorescent signal that is independent of pressure and temperature but linear with mole fraction. The OH PLIF signal was imaged in planes orthogonal to and parallel to the freestream flow at different equivalence ratios. Flameout limits were tested and identified. Instantaneous planar images were recorded and analyzed to compare the results with width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements in the same facility and large eddy simulation/Reynolds average Navier-Stokes (LES/RANS) numerical simulation. The flame angle was found to be approximately 10 degrees for several different conditions, which is in agreement with numerical predictions and measurements using WIDECARS. Finally, a comparison between NO PLIF non-combustion cases and OH PLIF combustion cases is provided: the comparison reveals that the dominant effect of flame propagation is freestream turbulence rather than heat release and concentration gradients

    OH PLIF Visualization of the UVa Supersonic Combustion Experiment: Configuration A

    Get PDF
    Hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) measurements were performed in the University of Virginia s dual-mode scramjet experiment. The test section was set up in configuration A, which includes a Mach 2 nozzle, combustor, and extender section. Hydrogen fuel was injected through an unswept compression ramp at two different equivalence ratios. Through the translation of the optical system and the use of two separate camera views, the entire optical range of the combustor was accessed. Single-shot, average, and standard deviation images of the OH PLIF signal are presented at several streamwise locations. The results show the development of a highly turbulent flame structure and provide an experimental database to be used for numerical model assessment
    corecore