RDX Remote Raman Detection on NATO SET-237 Samples

Emanuela C. A. Gallo, Luca M. L. Cantu, Frank Duschek

DLR Lampoldshausen - Institute of Technical Physics

2nd Scientific International Conference on CBRNe

SICC Series Conference

Rome – Italy, December 10-12 2020

Knowledge for Tomorrow

Motivations

- Safety for
 - Operator
 - Equipment
- Time consuming
 - to probe
 - to scan

How to improve?

- Remote detection through laser-based techniques
 - Faster sampling
 - Faster data analysis, classification and identification
 - · No direct contact with possible threats

Simplified sketch of laser-based remote detection

Why Short-Pulse Laser Techniques?

• Samples can thermodynamically relax between each laser pulse

DLR.de • Slide 4/11 > Emanuela C. A. Gallo, Luca M. L. Cantu, F. Duschek • RDX Remote Raman Detection on NATO SET-237 Samples > SICC CBRNe 2020 Rome, Italy > 10.12.2020

- Raman spectroscopy as a remote detection systems for:
 - RDX

• TNT

• Chemical warfare agent (CWA) simulants

- Tests designed to determine:
 - Sensitivity:
 - Lowest possible Explosives / CWA simulants concentration
 - Maximize signal to noise ratio (SNR)
 - Selectivity:
 - Distinguishing between dangerous and safe compounds
 - Minimize false positives / false negatives
 - Minimize / recognize background interferences

Samples – Explosives

• NATO SET-237 standard samples

RDX

- · Well defined and uniform explosive distribution
- Ink-jet printed drop-on-demand (DOD) by Fraunhofer ICT
 - Concentration: 50 1000 μg/cm²
 Area: 1 cm x 1 cm
 Multi-layer printing
 Solvent:
- ACN \rightarrow 50 µg/cm²
 - MEK \rightarrow 250, 1000 µg/cm²

Absorbance

0.40 • Tested standard wavelengths: • 224 nm 0.35 • 266 nm • 355 nm 0.30 • 532 nm Absorbance [-] 0.25 ACN Solvent 0.20 • 5.44 x 10⁻³ mg/ml RDX 0.15 0.10 0.05 Environment 0.00 Edinburgh Instruments Spectrofluorometer FS 200 250 300 350 400 450 500 Wavelength [nm]

532 nm

550

600

Experimental Setup

Results – Raman Spectroscopy on RDX

RDX spectra

- Detection distance 60 cm
- Acquisition time 30 s
- Peaks at 885 cm⁻¹, 1287 cm⁻¹ and 1310 cm⁻¹, always distinguishable
- Shift in peaks due to α or β crystallization

Sensitivity

- Limits found:
 - Minimum laser energy 1.5 mJ/pulse to probe 250 μg/cm²
 - Minimum sample concentration 50 μ g/cm² at 3.0 mJ/pulse

Summary and Conclusions

- RDX measurements obtained at DLR-LA using short-pulse Raman scattering:
 - RDX Raman signature corresponds to signature of pure substance known from literature:
 - Excellent SNR leading to identification vs background

- Successful identification of the operational limits for a 355 nm excitation laser at 60 cm distance:
 - Minimum laser energy 1.5 mJ/pulse to probe 250 µg/cm² RDX
 - Minimum RDX amount 50 μ g/cm² with 3.0 mJ/pulse laser energy

RDX #838, 1000 µg, 5 mJ, 30 Smoothing avg 10 pts RDX #832, 50 µg, 3 mJ, 30s

In Progress

- New tests planned to measure:
 - Explosives and chemicals contaminated realistic surfaces in different concentrations with self-prepared samples using drop-cast method
- New optical setup coupled with an improved detection system:
 - ICCD camera
 - <9 ns gate</p>
 - intensifier QE ~ 30% in the deep UV
- New laser source (355 nm) capable to provide higher output energy (max. 600 mJ/pulse)
 - Possibility to increase beam size (up to ~28 cm diameter)
 - Possibility to photo-dissociate explosives (PD-LIF)
- Further system optimization includes:
 - Acquisition time
 - Laser pulse energy
 - Laser beam diameter
- \Rightarrow
- Higher SNR Larger interrogation area

Faster detection

QUESTIONS

Thank You for Your Attention

RDX Remote Detection on NATO SET-237 Samples

Emanuela C. A. Gallo, Luca M. L. Cantu, Frank Duschek

DLR Lampoldshausen - Institute of Technical Physics

