CARS Data Analysis Procedure

Dr. Luca M. L. Cantu

Luca.Cantu@dlr.de +49 (0) 711 / 6862 257

DLR Stuttgart Institute of Combustion Technology Combustion Diagnostics Department

Deutsches Zentrum DLR für Luft- und Raumfahrt

Document properties

Title	CARS Data Analysis Procedure
Subject	Data evaluation
Institute	Institute of Combustion Technology – Combustion Diagnostics Department
Created by	Dr. Luca M. L. Cantu
Date	May 2018
Version	1.0

Index

1.	Preparation	7
2.	Correction for dye curve and background	9
3.	Calculation of the slit function	17
4.	Calculation of dispersion	21
5.	Creation of quick fit library	25
6.	Creation of fit library	31
7.	Fit the spectra	34
8.	Print results	49

1. Preparation

- Login to MC (AIX) machine via MC terminal using the following credentials:
 - Login: vtmess
 - Password: ask to SV-CARS system supervisor
 - Run tcars03.e (or the number of the MC terminal) to tell MC machine which terminal is connecting to it

To transfer the data from (or to) a Windows machine, use a file transfer protocol (STP) software (FileZilla at DLR) and use as host address:

o mc.vt.st.dlr.de

Login and password are the same listed above.

It is also possible to connect remotely to MC machine through Windows systems; use X-Win32 software and telnet connection type. Just remember to flag all the options in the window tab

Sessions	Window 🚇 Network 😓 Input 🔢	Font 👸 Security
	Multiple Options	
Multiple Winds Single Window		
Single Window	Single Options	Size Width 2000 Height 800
	Span all monitors	
Other Backing Stores	When Requested	
OpenGL softw Display splash Legacy Pseud	are rendering screen on startup oColor Support	Defailte

Create a directory on MC machine where to store all the raw data coming from DaVis ٠ software macro **Messung_svcars**. Note that the convention in use to name the data files is the following:

s8a086 is a sample of raw file, where:

- s = shifted
 8 = last digit of the last year (e.g. 2008 = 8, 2016 = 6)
- **a** = average or e = einen pulse (single shot)

 \circ 086 = day of the the year (varies from 001 to 365)

- Transfer the CARS data from DaVis computer to the MC terminal. A DaVis macro, filecopy("E:\\hdc_brenner\\"+svcars_daydir);, was created to avoid manual transfer. In any case, for each measurement point the following files must be present inside the designated folder in MC machine:
 - .asc = raw ASCII data
 - .log = header information (e.g. laser energies, location of measurement, etc...)
 - .tst = measurement protocol
- To make the scroll bar appears, type the following command:

○ xterm –sb –sl 500 &

 Run program setdir.e to copy from an old directory all the required codes and respective folders.

• setdir.e [old directory] [new directory]

The following folders will be copied with the respective codes (no data):

- o **apfit** folder designated to create/modify the slit (instrument) function
- o carp folder designated to create/modify the dispersion (wavenumber/pixel)
- o **Ifit** folder designated for the fitted data (results): use inputs from quick fit and library fit
- o **Iflib** folder designated to library creation and library fit
- o **mess** folder designated to correct the raw data for dye curve and background subtraction
- **qflib** folder designated to quick fit to select the best methods for fitting
- Useful commands for MC terminal:
 - **dir** lists all the files/folders inside the directory (same as Windows)
 - **cat** opens and print a file on screen
 - o **pq** opens and print a file on screen but stops at the end of each page
 - **up** moves one directory up (or use the command **cd.** as in Windows)
 - **ho** moves back to the designated home directory
 - **mv** rename a file
 - **dfu** shows the size of folders
 - **xterm &** opens a new terminal leaving active the old one (they can be used simultaneously)
 - **pwd** shows the actual directory
 - **ne** opens the file editor
 - o **mkdir** makes a new folder (same as Windows)
 - **cp p** copies as original in a new folder
 - Is * shows only file with designate extension (e.g. Is *.e show only .e files)
 - o **gm** shortcut to **mess** folder
 - o ga shortcut to apfit folder
 - gqf shortcut to qflib folder
 - o gl shortcut to lfit folder
 - o **glf** shortcut to **lflib** folder
 - o gc shortcut to carp folder
 - **chmod u+x *.e** gives the right to use all the executables inside the working folder
 - o **asctommf** [input.asc] [output.mmf] converts input files in .asc to a .mmf file

2. Correction for dye curve and background

- Work inside **mess** folder
- Edit **ne set.e** (code which creates input files for all other programs) code:
 - **TAG** = day of the year (as in the name of raw data)
 - **DATUM** = date
 - **DIRNAM** = name of the directory
 - **export LIN_SLO** = non-linearity slope of the detector (modify only if unsatisfactory fit)
 - export LIN_OFF = non-linearity offset of the detector (modify only if unsatisfactory fit)

After setting all the required parameters according to the new dataset, run the code. • set.e

- Modify set-nr.e and set a range where N₂ is located in order to maintain the peak of the intensity as it was during the experiment:
 - SDEVSTART = minimum number of pixel where to find N_2 peak
 - SDEVEND = maximum number of pixel where to find N_2 peak
- Run **korsp-nr.e** (code to correct single shots for dye curve and background subtraction) code:
 - korsp-nr.e [run # where the dye curve was saved] [# of dye curve to be saved]

e.g. korsp-nr.e 02 01

This code creates the following outputs:

- xxmyyy.asc corrected and normalized dye curve (ASCII)
- xxnyyy.asc normalized, relative single dye curves (ASCII)
- xxuyyy.asc background for dye curve (ASCII)
 - tnyyy.asc normalized, relative single dye curves (ASCII)
 - dyexx.asc corrected averaged dye curve (ASCII), only for visualization

To see and decide which dye curve use for the data analysis, run the **spi** code.

Here some useful commands for spi:

- **chd [file]** changes the default work file (e.g. chd s9m31101.asc)
- **gino** displays data (e.g. gin-(parameter1)-(parameter2), gin-asc-yma4)
- load [file] loads a file and keep into memory
- load [file]-mean loads a file and average with the one(s) in memory
- **unlock** unlocks all the file and enable modifications
- **sd** adds description to the head of the plot
- **save [filename]** saves the file in use with the chose filename (and extension)
- gin-asc displays ASCII format
- gin-mmf displays mmf (binary) format
- **gin-ymaX** sets y-maximum (X = maximum value, usually between 2 and 4)
- **gin-yminX** sets y-minimum (X = minimum value, usually -500)
- **gin-xmaX** sets x-maximum (X = maximum value, usually between 2 and 4)
- **gin-xminX** sets x-minimum (X = minimum value, usually -500)
- **gin-lasX** plots last files in one single graph (X = number of plots)
- **gin-pform pq** generates the postscript
- @spek
 displays all spectra in separated boxes
- **@fit** displays all the data, fitted spectra and difference in separated boxes
- **gin-mul** displays multi spectra (e.g. gin-mmf-mul-las20)
- **nomul** disables multiple plots (just a single plot with –eventually- multiple lines)
- gin-ps saves a copy of the plots in .ps format
- **charli** X **z2su** prints spectrum (X = filename)

e.g. To visualize the summary of dye curves use the following command sequences:

- 1. spi
- 2. chd dyexx.asc
- 3. gin-asc-yma4-fir1-las4

(open first 4 plots in gino ASCII format with ymax=4)

Note the color scale sequence:

- 1st curve is white
- 2nd curve is red
- 3rd curve is blue

Run this code for all the dye curves recorded during the experiment. Verify that there is no significant changes between the begin and the end of the experiment; if so, additional correction need to be performed based on interpolation of the dye curve change during the experimental time.

e.g. To average to dye curves, use the following command sequences:

- 1. spi
- 2. chd dyexx.asc
- 3. unlock
- 4. load dyexx.asc (loads first dye curve)
- 5. load dyexx.asc-mean (loads second dye curve and average with the first one)
- 6. sd _DATE comments (adds date and description on the head of the plot)
- 7. save **s**y**m**dddzz**.asc** (where y = year; ddd = day; zz = dye #)
- Edit **ne set-all.e** (code to correct single shots for dye curve and background subtraction) code:
 - Export file_app =
- **g** = narrow-band dye laser background
- **f** = flame background
- **b** = camera noise background
- DYE=
- fo = offset background (average from baseline)xx = number of the run of the dye curve is in use for correction

Page: 11

	12.975) 	12				776 3	
File	Edit	Search	Preferences	Shell	Macro	Windows	Help
♥ set-a ■ alle ■ mehr	ll.e 2 wichtig soviel	18-Mar-00 Jen Ueberga uebergeber	beparameter werde werden muessen.	en jetzt '	'exportier	t", damit nicht	
Versi Versi Versi "expo 12-Ju	on 2.0 on 2.1 on 2.2 rt" ist	19-Apr-200 20-Apr-200 18-Jul-200 wohl gar change in	00 00 nicht noetig?! lfit.e: FILE APP	taken fro	om \$2 and	RESAPP=\${FILEAPP	}\${RES APP
Leers	trings	mit "xx" k	ennzeichnen!!!				
fuer	korsp-e	p.e:	or "b","f"	,"fo"	******		
export if ["\$ if ["\$ if ["\$ if ["\$ if ["\$ if ["\$ DYE=05	FILE_AF {FILE_A {FILE_A {FILE_A {FILE_A {FILE_A {FILE_A {FILE_A	P="9" PP}" = "bo PP}" = "b" PP}" = "fo PP}" = "fo PP}" = "fo PP}" = "9" PP}" = "90	"]; then KORSI]; then KORSI]; then KORSI "]; then KORSI g"]; then KORSI]; then KORSI "]; then KORSI	P_=" BLO P_=" BLO P_=" FLA P_=" FLA P_=" FLA P_=" 532 P_=" 532	CORR_OFF x cx x CORR_OFF x CORR_OFF k cx x CORR_OFF x	x "; fi x "; fi x "; fi x "; fi uRR_532 "; fi x "; fi x "; fi	
AFILE0= export	\${FILE_ FILE_AF	APP} P=\${FILE_F	PP}d\${DYE}				
AFILE=\$ # Schal export	(FILE_A ter und IF_KORF	PP} Start und L_AMAX="" AMIN=""	Endwert fuer spo ="" aktivn="!	ezielle Ko holifio fi	orrekturen (tiv terspectr	a exceeding this	value
export export export	AMAX_V= AMAX_N= AMAX_S= AMAX_S=	60000 (0 70	<pre># filter vaiatur # number of spec # start pixel # end pixel</pre>	ation, bre	eakdown, lis checke	etc) ed in the	
export export	AMIN_V=	75	headhold is chose	Thresh	old to filt	er spectra with I	ow values
export export	GRE_S=1 GRE_E=3	0	average of this p	ixel range			
export export export export	GRE2_S= GRE2_E= OFF_S=1 OFF_E=3	250	When chosen E where the aver	8kg "fo", t age Bkg f	these opti rom base	ons set the rang line is calculated	e of pixels
<pre>fuer export</pre>	all-ep. R_KORSF	e ="1"					
export export export	R_LFIT= R_SHOW= R_FINAL	"1" ="0"					
<pre>export # Alloe</pre>	MHAERK_	L151="50 4	10 50 25 20"				
export export	SHIFT=0 ZOFF=fa	.0 lse					
expor	t ZUFF=	true					
<pre># ruer # norma export export</pre>	RES_APP	ertung: =\${FILE_AF	P}_1				
export export	LFLIB="	xx" ="\${RES_AF	P}"				
export	ICHNF=1	80					
export	ICHN=27	D=-29					
export export	CHANNEL	_A=1 _B=\${ICHNF	}				
export	FACTOR	R=1.0					


```
# nur Hot-Band:
# export RES_APP=${FILE_APP}hbs
# export LFLIB="_hb"
# export TAB_APP="_3_${RES_APP}"
    # export KONSHIFT=0
    # export ICHNF=120
    # export ICHN=88
    # export ICHN_ADD=50
 # Variables for lfit.e, qflib_nls.e und lflib_nls.e (parameter for different flames);
if [ "${LFLIB}" = "xx" ] ; then
export LFIT_P="4.935"
export LFIT_CONC="78.8426"
export LFIT_S_CONC="70.8426"
export LFIT_S_CONC="72.8"
export LFIT_MIN_CONC="72.8"
export LFIT_MIN_CONC="72.8"
export LFIT_MIN_CONC="72.1"
export LFIT_ANRS="7.103"
export LFIT_S_AXNRS="0.000555294"
export LFIT_S_AXNRS="0.000555294"
export LFIT_S_IMNRS="8.45"
    export LFIT_HAX_AXNRS="8.45"
export LFIT_MAX_AXNRS="8.45"
export LFIT_CONH20="-0.01756235"
export LFIT_S_CONH20="0.00005854"
  export LFIT_MAX_CONC02="0,103864
export LFIT_MAX_CONC02="0,1244"
export LFIT_CONC02="0,01608"
export LFIT_S_CONC02="0,00005360"
export LFIT_MAX_CONC02="0,1139"
    fi
   # fuer show*.e:
export MAXERR=25
    export METHOD=29
NEW=new
    APP=app
      # Spreadtest:
    export DT="xx"
export M1="xx"
   export M2="xx"
export M3="xx"
    export SPREADTEST=" ${DT} ${M1} ${M2} ${M3} "
    FLAMME="FIRST-III Referenzflamme"
#
EXP_06=" 06 ${AFILE} ${DYE}
EXP_07=" 07 ${AFILE} ${DYE}
EXP_08=" 08 ${AFILE} ${DYE}
EXP_09=" 08 ${AFILE} ${DYE}
EXP_10=" 10 ${AFILE} ${DYE}
EXP_11=" 11 ${AFILE} ${DYE}
EXP_11=" 11 ${AFILE} ${DYE}
EXP_12=" 12 ${AFILE} ${DYE}
EXP_13=" 13 ${AFILE} ${DYE}
EXP_14=" 14 ${AFILE} ${DYE}
EXP_15=" 15 ${AFILE} ${DYE}
EXP_15=" 16 ${AFILE} ${DYE}
EXP_15=" 18 ${AFILE} ${DYE}
EXP_13=" 19 ${AFILE} ${DYE}
EXP_13=" 10 ${D
                                                                                                                                                     r HAB
                                                                                                                                                                                                  F1.
                                                                                                                                                                                                                                                   532 BB
                                                                                                                                                                                 FI. 532 BB

FIRST-III 41 50 ${KORSP_} ${NEW}

FIRST-III 38 50 ${KORSP_} ${APP}

FIRST-III 32 50 ${KORSP_} ${APP}

FIRST-III 22 50 ${KORSP_} ${APP}

FIRST-III 35 50 ${KORSP_} ${APP}

FIRST-III 35 50 ${KORSP_} ${APP}

FIRST-III 45 50 ${KORSP_} ${APP}

FIRST-III 41 50 ${KORSP_} ${APP}
                                                                                                                                                    0 107
                                                                                                                                               0 107
0 95
0 80
0 62
                                                                                                                                                  0 45
0 37
                                                                                                                                                                                   FIRST-III 41 50 ${KORSP_}
FIRST-III 38 50 ${KORSP_}
FIRST-III 38 50 ${KORSP_}
FIRST-III 44 50 ${KORSP_}
                                                                                                                                                 0 37
0 30
                                                                                                                                                                                                                                                                                                                  ${APP}
                                                                                                                                                                                                                                                                                                                  ${APP}
                                                                                                                                                   0 24
                                                                                                                                                                                                                                                                                                                  ${APP}
                                                                                                                                                 0 24 FIRST-III 44 50 $(KORSP_) $(APP)
0 18 FIRST-III 55 50 $(KORSP_) $(APP)
0 12 FIRST-III 55 50 $(KORSP_) $(APP)
0 3 FIRST-III 10 50 $(KORSP_) $(APP)
0 1 FIRST-III 28 50 $(KORSP_) $(APP)
0 80 FIRST-III 28 50 $(KORSP_) $(APP)
  # Einstellungen fuer individuelle Namelists
# SpekNr BKG T ConN2 ConH20 ConC02 AXNRS PRESS
    # NLS_04=" 04 ${AFILE} 1600.00 54.50 0.051 0.017 8.12 0.987"
    # Kommentarstrings, die via gr.e in die Ausdrucke eingebunden werde
# ACHTUNG: Keine Leerzeichen im String verwenden !!
     # GR_07="TLC_1bar_Phi=2,1_r=0mm_h=5mm_Gain=90"
  1
```

The best way to check if the correction of the background and dye curve is correct is try to correct a room temperature spectrum. To do so, run **korsp-rt.e** program:

- korsp-rt.e [room temperature run #] [dye curve run #]
 - e.g. korsp-rt.e 01 04

The program has he following outputs:

• xxayyy.cor corrected averaged room temperature spectrum (carp format)

xxayy.sdxxuyy.asc

normalized, averaged room temperature spectrum (ASCII format) background for room temperature spectrum (ASCII format)

To visualize the resulting spectrum use spi (e.g. spi -> chd xxayyy.cor -> gin).

Repeat this procedure for all the room temperature spectra: the outputs of this program will be the inputs for the slit function calculation (see section 3).

After choosing the appropriate background and dye curve, save the changes and run **korsp-ep.e [run#] [dye#] [bkg information to filename] [bkg]** code to process one single shot

o e.g. korsp-ep.e 03 99 fd99 FLA

or **korsp-ep_all.e** (define the starting and ending point) to process all the data files (it calls korsp-ep for each single shot).

The code provides the following outputs:

• xxsyyyfd.cor

•

xxayyfd.cor corrected averaged CARS spectrum (mmf format)

corrected of single CARS spectra

- xxayyfd.sd corrected averaged CARS spectrum (carp format)
- xxayyfd.acs
- xxayyfd_.mmf
- contains 10 spectra for procedure summary and checknarrow-band dye laser background (532)
- 2. broad-band dye laser background
- 3. flame luminosity (laser off) background (FLA)

corrected averaged CARS spectrum (ASCII format)

- 4. averaged spectrum with complete dye curve correction
- 5. averaged spectrum with offset correction (special correction)
- 6. averaged spectrum with (special) correction for narrow-band
- 7. averaged spectrum with camera linearity correction (not applicable for FlameStar2 camera)
- 8. averaged spectrum after filter for minimum values is applied
- 9. averaged spectrum after filter for maximum values is applied
- 10. averaged spectrum with background (and 1-2 pixels) subtraction
- e.g. To visualize the summary spectra use the following command sequences:
 - 1. spi
 - 2. chd xxayyfd_.mmf
 - 3. @spek
 - 4. gino

Or in a different (and simpler) way you can use the **dis-bkg.e** command:

• dis-bkg.e [name of corrected spectrum] ([ymin][ymax] optional)

e.g. dis-bkg.e 10fd99 0 500

3. Calculation of the slit function

- Work in **apfit** folder
- The slit function is calculated in two steps; the first one involved the use of the room temperature spectrum recorded with the smaller slit width (usually 50µm, files are named with _50). The optimization involved the Lorentzian and Gaussian part of the slit function, and later the trapezoid part. The second part involved the room temperature spectrum recorded with a larger slit width (400 µm, file are named with _1). The optimization involved mostly the middle part of the trapezoid, leaving almost constant the previously found parameters. The quality of the fit is determined mostly by looking and the comparison fit to data and by the F(Sum) error parameter. Usually a value of F(Sum)<0.2 is an indication of a good fit but it is not a strict rule.</p>
- Edit the name-list file **ne standyyy_x.nls** (file containing all the inputs for fitting). Remember to rename the name-list file with the current day number (yyy):
 - **ICHN** = number of pixels to fit (default 80)
 - **ICHN0** = starting pixel point (default 50) for the fit: everything before is ignored
 - **RMAX** = maximum wavenumber (calculated by shift parameter)
 - **RMIN** = minimum wavenumber (useless if ICHN and ICHN0 are in use)
 - **DISP** = dispersion of pixels (default 0.709)
 - **CHDISP** = non-linear dispersion (may be useful if DIS is not working by its own)
 - **KON** = control variables for fit: 1=on, 0=off. Values aside are used as constant (KON=0) or starting values for fit (KON=1)
 - **SG** = Gaussian part of the slit (instrument) function
 - **SL** = Lorentzian part of the slit (instrument) function
 - **G1** = narrow-band dye laser linewidth
 - **DLL1** = narrow-band dye laser wavelength
 - **TRAPL** = trapezoid left part
 - **TRAPM** = trapezoid middle part
 - **TRAPR** = trapezoid right part
 - **ZTRAPLR** = symmetric trapezoid
 - **ZLORT** = Lorentzian part of the trapezoid
 - **ZPOSTCON** = postconvolution
 - **AXNRS** = non-resonant background (use 7.27 for air, otherwise use Gaseq software to calculate the chemical equilibrium at desired temperature and calculate the new value through the CARS_auswertung excel file)
 - **ZLIB** = creates libraries if true (T) (use it only after optimization)
 - **ZOFF** = fits for offset (use it only as last attempts if the background is very noisy)
 - MAXF = maximum iterations (remember that the error depends also on starting value)
 - **ACCREL** = relative accuracy (0.1 is a good value)
 - \circ **IREFNO** = reference number (not used in the calculations, use the number of the day as identification)
 - **ZLOW** = collisional narrowing model for high pressure (p>3 atm) if T; otherwise uses model for low pressure (p<3 atm) when F.

stand	1137_1	_50.nls						<u>- ×</u>
File	Edit	$\underline{S}earch$	Prefere	ences	Shell	Macro	$\underline{W} \text{indows}$	Help
&NDN ICHN RMAX DISP DLMIN KONSHF KONT KONTR KONTR KONC KONSG KONSL KONSL	= 80 = 23 = 0. = 51 = 1, = 1, = 0, = 0, = 0, = 0, = 0,	, 44.174, 7090000, 8.0000000,	ICHNO RMIN CHDISP DLMAX SHIFT T TR P CONC SC SL G1	= 56, = 2100 = 0.00 = 530. = 294. = 300. = 300. = 78.0 = 0.73 = 0.22 = 0.25	.000, 00, 000000, 00, 0, 5, 9, 4, 3, 00,	ZTR	= F,	
DLL1 ZPOSTCI KONTRAI KONTRAI KONTRAI AXNRS	= 59 DN = T, PL = 0, PM = 0, PR = 0, = 7.	6,00000, 27E-18,	ZTRAPLR TRAPL TRAPM TRAPR	= F, = 0.00 = 0.00 = 0.23	0, 0, 5,	ZLORT	= T,	
CONH20 ZLIB ZOFF ZP	= 0. = F, = F,	0000,	CONCO2 ZL ZO ZSORT	= 0.00 = F, = T, = F	00,	ZTRANS ZSAME	= T, = F,	
ZXC ZX KONSAS ALPHA2 THETA VDPHAS IP MAXE	= T, = T, = 0, = 3. = 0. = -1	2402E-51, 000, 0000,	ZXCA ZVDPHA SAS RHO PHI XCDE IPV	= T, = T, = 0.00 = 0.02 = 0.00 = 1.00 = 0,	00, 2000, 00, 00,	ZLOW	= T,	
ACCREL IREFNO 7	= 0. = 13	, 100, 7,	ACC ITEST	= 0.00 = 0	0,	н	= 0,000,	

- Edit **ne carp-rt_all.e** (program for room temperature fitting): ٠
 - = number of run of room temperature spectrum (50 for 50µm, 1 for 400µm slit width) = number of namelist (.nls) file in use (**50** for 50µm, **1** for 400µm slit width) NUM1 0
 - NLS 0

earp	-rt_all.e	2					_ [D] ×
File	Edit	Search	Preferences	Shell	Macro	Windows	<u>H</u> elp
# # load • ••/me	variabl ss/set.	e definitio e	ns:	******			
SPECSD1 KOMPAKT	=\${PRE} =kompak	a\${TAG} t.res					
# # # No. 0	f RT-sp	ectra					
NUM1=03 NUM2=-1 NUM3=-1 # No. o NLS=1	f namel	ist to use					
if [\$# DUMM	-9e 1 Y=\$1]; then					
echo exit fi # NUM=\$	"use: 3	\$0 <run nur<="" td=""><th>ber> (<text)<="" for="" th=""><td>kompakt></td><td></td><td></td><td></td></text></th></run>	ber> (<text)<="" for="" th=""><td>kompakt></td><td></td><td></td><td></td></text>	kompakt>			
ŧ echo " echo " carp-rt	-\${1}-\$ \${SPECS .e \${NU	{2} D1}\${NUM1}: M1} \${NLS}	" >>\${DIRAPFIT}\$ ecs \$1 \$2	(KOMPAKT)	" >>\${ }	(DIRAPFIT)\${KOMPAKT	}
f[\${ echo carp-	NUM2} - " \${SPE rt.e \${	ne "-1"] ; CSD1}\${NUM2 NUM2} \${NLS	then }:" >>\${DIRAPFIT; } ecs \$1 \$2	\$\${Kompak	<t}< td=""><td></td><td></td></t}<>		
fi # if [\${ echo	NUM3} - " \${SPE	 ne "-1"] ; CSD1}\${NUM3	then }:" >>\${DIRAPFIT	}\${KOMPAk	<t}< td=""><td></td><td></td></t}<>		
carp- fi #	rt.e \${ 	NUM3} \${NL9	} ecs \$1 \$2				ſ
#							

Run the code:

 carp-rt_all.e [fit trial #] [optional comments (useful to track the fitting changes & parameters)]

e.g. carp-rt_all.e 01 Fit:shift (2234)

This code creates the following outputs:

- o file_01.bd Fitted spectra and residue (binary, carp-format)
- file_01.zd Fit information (all the iterations performed)
- **kompakt.res** List of selected parameters for the fit

Verify the goodness of the fit by minimizing **F(Sum)** parameter.

-103- s6a32	616:										
SG	SL	TRAPL	TRAPM	TRAPR	CONC	Ρ	Т	RMAX	CNT	FSUM	YMAX
1.378	. 281	.015	.003	. 303	78.09	1.0	300.0	2355.001	44	.8222	10865
1.378	. 281	.014	.003	. 306	78.09	1.0	300.0	2354.999	43	.8060	10689
1.378	. 281	.002	.003	. 302	78.09	1.0	300.0	2354.990	34	.7443	10706

Then check the the goodness of the fit by looking at theory to data plot using **gr.e** program:

```
• gr.e [room temperature run #]_[fit trial #]
```


e.g. gr.e 3314_01

(note: a black window pops up: double-click on mouse middle button to activate the plot)

Iterate fitting the room temperature spectra using the following procedure:

- 1. Start with room temperature spectrum with 50 µm slit width.
- 2. Fit only for horizontal shift (KONSHF=1, every other KON variable = 0, temperature fixed at measured room temperature value).
- 3. Update the starting value of the shift modifying ICNH0 value based on R_MAX fit.
- 4. Fit for Gaussian (SL=1) and Lorentzian (SG=1) part of the slit function coupled with horizontal shift (with updated ICNH0 starting value); keep TRAPM = 0.
- 5. Remove SL(=0) and SG(=0) from the fitting parameter (updating the values to the best fit) and activate left (TRAPL=1) and right (TRAPR=1) trapezoid part.
- 6. Fit one last time only for temperature (to verify the value of measured room temperature).
- 7. Switch to room temperature spectrum with 400 μm slit width and edit the carp-rt_all.e according to the new inputs.
- 8. Keep all the updated fitting values from the 50µm fit.
- 9. Activate only middle (TRAPM=1) trapezoid part and fit for it.
- 10. Once updated the value, fir only for TRAPL and TRAPR.
- 11. Last fit with only temperature again.

4. Calculation of dispersion

- If the spectra are not all corrected for background subtraction and dye curve, go to **mess** folder.
- Process a hot spectrum subtraction the background (**korsp-nr.e** code) and correcting for dye curve (**korsp-ep.e** code). Detailed instructions are provided in previous section 2.
- Copy **carp** folder from previous data analysis folder if it is not present
- Now work in **carp** folder.
- Edit **ne carp-fit_all.e**
 - AFILE = "gdxx" where xx is the value in the name-file of .sd output in mess folder
 - NUM=xx\${AFILE} where xx is the run number of the hot spectrum to fit

4

DLR

Fi	ile	Edit	<u>S</u> earch	Preferences	s Shell	Macro	<u>W</u> indows	Help
+ 2	7-No	v-2001:	namelist (now carp\${TAG}_:	x.nls	1676	20	
# # 1.	oad	variabl	e definiti	ons:				
• •	./me	ss/set.	e	11973 1				
SPE	CSD1	=\${PRE}	a\${TAG}				and the second	
10D	EL=e Pokt	cs -kompak	t ree					
if	[]]	\$# -ge	2]; the	n _{en en energ} e e	200	92 98 26		23 502
e:	cho xit	"use: \$	0 Krun numl	ber≻ <text for="" i<="" td=""><td>kompakt₊re</td><td>s> <number< td=""><td>of exp.> <nls r<="" td=""><td>iumber>"</td></nls></td></number<></td></text>	kompakt₊re	s> <number< td=""><td>of exp.> <nls r<="" td=""><td>iumber>"</td></nls></td></number<>	of exp.> <nls r<="" td=""><td>iumber>"</td></nls>	iumber>"
els:	e							
₩ # CI	reat	e namel	ist files	for different p	hi's:			
WLS:	=car S∩=\$	p\${TAG} {NLS}1	_ nls					
+		(120)1.						
-11-11 #	LE="	9 d1 3"						
ech #	o "\$	{1}	\${2}		-" >>\${KOM	PAKT}		
5								
# if	₹]	# -oe 4]: then					
0.935	NUM	=\$3	, shou					
	NLS	_NUM=\$4 o " \${S	PECSD1}\${N	UM}_\${1}" >>\${K	OMPAKT}			
	car	p-fit.e	\${NUM} \${I	NLS_NUM} \${MODE	L} \$1 \$2			
ex Fi	it							
if	[1	-eq 1]; then					
AFII	LE="	9d13"						
	NUM	=07\${AF	ILE}					
	ech	o " \${5 p-fit.e	PECSD1}\${NUM} 10	UM}_\${1}" >>\${K 0 \${MODEL} \$1 \$:	UMPAKT} 2			
#	222							
с 1 . 	8772		ST-0 535					
if	[1	-eq 0]; then					
#		0.1# (OF						
	ech	=∪4\${H⊦ o " \${S	TLE} PECSD1}\${N	UM}_\${1}" >>\$ { K	OMPAKT}			
2	car	p-fit.e	\${NUM} 1 :	\${MODEL} \$1 \$2				
#	NUM	=05\${AF	ILE}					
	ech	o " \${S	PECSD1}\${N	UM}_\${1}" >>\${Ki ¢/MODEL % ¢1 ¢2	DMPAKT}			
ŧ			. ⊅(I10II) I .	₽(IODCC) ₽1 ₽2).
	NUM	=06\${AF ດ " \${S	ILE} PECSD1}\${N	IM} \${1}" >>\$ { {K	OMPAKT}			
	car	p-fit.e	\${NUM} 1	\${MODEL} \$1 \$2	100 100 100 100 100 100 100 100 100 100			
f	NUM	=07\${AF	ILE}					
	ech	o " \${S	PECSD1}\${N	UM}_\${1}" >>\${Ki #/MODEL & #1 #2	OMPAKT}			
ŧ			• ⊅ \NUNJ I •	⊅\[NUDEL] ⊅1 ⊅2				
	NUM	=08\${AF ດ " ⊄≮⊂	ILE} PECSD13⊄√N	IMን \${1ን" >>¢ደሥ	ЛМРАКТЪ			
5	car	p-fit.e	: \${NUM} 1 :	\${MODEL} \$1 \$2	ern rup (
并	NUM	=11\${AF	ILE}					
	ech	o " \${S	PECSD1}\${N	UM}_\${1}" >>\${Ki	ompakt}			
#	car	p-+it.e	⇒{NUM} 1 :	\$1"UDEL} \$1 \$2				
	NUM	=12\${AF	ILE}	በዜት ሐርብት። እእሐበማ	OMDART)			
	ech car	Ծ ⊅։Տ p-fit.e	reusD1}⊅{N : \${NUM} 1 :	0n;_>11;" >>>1(K) \${MODEL} \$1 \$2	UNPHK1}			
#		-17¢∫0⊑	11 E }					
	ech	-⊥3⊅(HF ο " \${S	PECSD1}\${N	UM}_\${1}" >>\${K	OMPAKT}			

Using the previous found slit function parameters, fit the hot spectrum for temperature first (KONT = 1) and then for dispersion (DISP) modifying the carpxxx_100.nls.
 Remember to modify ZLOW = (T for p < 1.5 atm or F for p > 1.5 atm).

File	Edit	$\underline{S} earch$	Prefere	ences	Shell	Macro	\underline{W} indows	Help
&NDN								
ICHN	= 80	,	ICHNO	= 56,				
RMAX	= 23	44.335,	RMIN	= 2100	.000,			
DISP	= 0.1	7090000,	CHDISP	= 0.00	00,			
DLMIN	= 51	B.000000,	DLMAX	= 530.	,00000			
KONSHE	= 0.		SHIFT	= 0.00	00,			
KONT	= 1,		T	= 294.	0.			
KONTR	= 0.		TR	= 300.	0.	ZTR	= F.	
KONP	= 0.		P	= 0.95	5.		26	
KONC	= 0.		CONC	= 78.0	9.			
KONSG	= 0.		SG	= 0.73	4.			
KONSL	= 0,		SL	= 0.22	3.			
KONG1	= 0.		G1	= 0.25	00.			
DLL1	= 59	5,00000,						
ZPOSTCO	N = T		ZTRAPLR	= F.		ZLORT	= T.	
KONTRAP	1 = 0.		TRAPI	= 0.01	1.		.,	
KONTRAP	M = 0.		TRAPM	= 2.10	ō.			
KONTRAP	R = 0.		TRAPR	= 0.40	0.			
AXNRS	= 7.3	27E-18.			.,			
CONH20	= 0.1	0000.	CONCO2	= 0.00	00.			
7L I B	= F.		ZL	= F.		ZTRANS	= T.	
ZOFF	= F.		70	= T.		ZSAME	= F.	
ZR	= F.		ZSORT	= F.		201112		
ZXC	= T.		ZXCA	= T.		ZLOW	= T.	
7X	= F.		ZYDPHA	= T.				
KONSAS	= 0.		SAS	= 0.00	00.			
AL PHA2	= 3.3	2402E-51	RHO	= 0.02	2000.			
THETA	= 0.1	000.	PHI	= 0.00	00.			
VIDPHAS	= 0.1	0000.	XCDE	= 1.00	00.			
IP	= -1		IPV	= 0.	1.1.4			
MAXE	= 50							
ACCREL	= 0.1	100.	900	= 0.00	0.	HH	= 0.000.	
IREENO	= 13	7.	ITEST	= 0	.,			
1				12.518				
57.0								
								-
<u></u>								

• Run carp-fit_all.e:

carp-fit_all.e [# of fit] [basenamefile of spectrum to fit] [.nls#] e.g. carp-fit_all.e 01 14fd99 100

• As for the slit function, first minimize the **F(sum)** and then check the goodness of the fit using the **gr.e** command.

The goal is to align all the rotational lines even if the F(sum) may increase. Once found the optimum dispersion value, repeat the slit function calculation (section 3) using the new updated dispersion value. Iterate again between dispersion and slit function until convergence is found.

5. Creation of quick fit library

- Work in **mess** folder.
- Before starting, run **gaseq** code and note all the specie concentrations for the tested flame at maximum temperature (at stoichiometric conditions, phi = 1).

🜩 Gaseq	and Persons			-				23
File Edit Units S	tdProblems N	lixtures Constrai	nts Help					
Problem Type					⊢ Input File P	age <u>T</u> itle ——		1
Adiabatic T and co	amposition at c	onet P	Erozen Cher	nietru				
Adiabatic 1 and co	sinposition at c		r no <u>z</u> en ener	motry	P	revious <u>N</u> e	st	
Rea	ctants	-	3.0		2 <u>.</u>	Products		
w		±	¥iew S	pecies		22 22 22/2	±	
Species No.M	toles MolFra	C K			Species	No.Moles	MolFrac K	
02 0,21	000 0,1900	5	Add	Delete	H20	0,20410	0,18334	
CH4 0,10	500 0,0950	12			C02	0,09503	0,08536	
			Clear <u>H</u> eacts	Clear Prods		0,00997 0,00508	0,00896 4,56e-03	
			Clear All B		ОН	0,00325	2,92e-03	
er i li i pli	1 000 0				I H	4,340e-04	3,90e-04	
Stoichiometry, Phi	1,000 56		<u> </u>		H2	0,00403	3,62e-03	
NUCH	Reactants		Products		NO	0,00220	1,98e-03	
Calculate (F10)	300,	Process	ture, K	2226,				
I	1,0	Volume Produc	ts/Reactants	7 4753				
		Moles Product	s/Reactants	1 00745				
	-7,061	HO, kJ/i	nol	-7,004				
	200,224	S0, J/m	ol/K	270,839				
	29,711	Cp, J/m	ol/K	41,404				
	1,389	Gamma,	Cp/Cv	1,251				
Auto-increment a	27,64	Mean Molecul	ar Weight, g	27,43				
reactant conc	1,1226	Density,	kg/m3	0,15017				
or property by double clicking	-255 50	Fotbalou H	k.l/ka	-255 35				
it.	7245.25	Entropy, S.	J/ka/K	9873.68				
	-345,75	Intern Energy,	U, kJ/kg	-930,06				
	-2429,07	Free Energy,	G, kJ/kg	22234,15				
	1075,13	Cp, J/kg	/K	1509,43				
	24,6178	Volume,	m3	182,664				
	2,45E+19	Molecules	/cc	3,30E+18				
	4,06E-05	Moles/c	с .	5,4/E-06				
	1,80E-05	Viscosity,	kg/m/s	1,08E-05				
	2 A2E-03		u, ⊪i∠rs · /m/K/e	+,72E-04				
	2,421-02	TED:((· m/ N/ S	04E 04				

Use those values to update the tables in the excel file CARS_auswertung.

First update the value for the fuel with all the product concentration in order to evaluate the maximum AXNRS:

	А	В	С	D	Е
1	JetA1-Air	Flame			
2	Phi =	1,0			
3					
4	Moleküle	AXNRS	Konzentrationen	AXNRS	
5					
6	N ₂	7,10	73,067	5,188	
7	H ₂ O	15,50	12,134	1,881	
8	CO ₂	9,20	11,652	1,072	
9	CO	9,80	1,504	0,147	
10	O ₂	7,80	0,667	0,052	
11	H ₂	7,00	0,285	0,020	
12	Ar	9,60	0,000	0,000	
13	NO	18,90	0,276	0,052	
14	CH ₄	31,80		0,000	
15	C_2H_4	84,90		0,000	
16	C ₃ H ₆	126,70		0,000	
17	C ₄ H ₈	147,80		0,000	
18	i-C ₄ H ₁₀	130,60		0,000	
19					
20	Summe:		99,585	8,412	
21					

Then update also the table in tab **T-Abhängigkeiten** and note all the values inside: they will be the inputs to for the library creation.

				T-kalt 300			N2-kat 78,1				min_axrvs 7,27									
CARS-Exp.	Flamme	р	٠	T-heiß =Tad	N-D conc	N-T a_conc	N2-heiß min_conc	N2-kat max_conc	AXNRS-0 axnrs	AXNRS-T s_autrs	AJONRS-heiß max_axmrs	H20-0 con_h2o	H2O-T s_conti2o	H2O-heiß max_comh2o	CO2-0 con_co2	CO2-T s_conco2	CO2-heiß max_conco2	H2-0 con_h2	H2-T a_cosh2	H2-hei8 max_conh2
	Flamme-I	3%	0,85	2264	78,7263	-0,00208758	74,0	78,1	7,160020	0,000366599	7,99	-0,01680244	0.00005601	0,11	-0,01680264	0,00005601	0,11	-0,02205703	0.00007352	0,1444
N	Flamme-I	3%	1,2	1726	78,5628	-0.00154278	75.9	78,1	7,147980	0.000406732	7,85	-0.01577840	0.00005259	0,075	-0,01577840	0,00005259	0.075	-0.03037868	0,00010126	0,1464
	Flamme-III	5%	0.67	1855	78.6595	-0,00186495	75.2	78,1	7,194759	0.000250804	7,66	-0.01717042	0.00005723	0,089	-0.01717042	0.00005723	0,089	-0.02785852	0.00009286	0,1464
	Planme-IV	3%	0.64	1896	78,6107	-0.00170240	75,4	78,1	7,215145	0.00018285	7,56	-0,01607818	0.00005359	0,085	-0,01607818	0.00005359	0,085	-0,02731400	0,00009105	0,1444

Note that all the species (H_2O , CO_2 , H_2) must be written in absolute mole fraction except N_2 which must be written in percentage.

• Edit the **ne set.all.e** program: update all the values about the slit function obtained in the previous section and update all the values regarding the specie concentrations, maximum and minimum values, non-resonant background, pressure and the values of the slopes. The last information are obtained from the excel sheet. Regarding the method, use the 29. It is proved to be best one (however, after fitting it is possible to compare different methods and choose the most appropriate one if 29 is not satisfactory).

a set-all.e - U × File Edit Search Preferences Shell Macro Windows Help # set-all.e 28-Mar-00 # alle wichtigen Uebergabeparameter werden jetzt "exportiert", damit nicht # mehr soviel uebergeben werden muessen. # # Version 2.0 19-Apr-2000 # Version 2.1 20-Apr-2000 # Version 2.2 18-Jul-2000
"export" ist wohl gar nicht noetig?!
12-Jun-2012 change in lfit.e: FILE_APP taken from \$2 and RESAPP=\${FILEAPP}\${RES_APP} # Leerstrings mit "xx" kennzeichnen!!! # fuer korsp-ep.e: export FILE_APP="g" if ["\${FILE_APP}" = "bo"] ; then KORSP_=" BLO KORR_OFF xx " ; fi if ["\${FILE_APP}" = "b"] ; then KORSP_=" BLO xx xx " ; fi if ["\${FILE_APP}" = "f"] ; then KORSP_=" FLA XX xx " ; fi if ["\${FILE_APP}" = "fo"] ; then KORSP_=" FLA KORR_OFF xx " ; fi if ["\${FILE_APP}" = "fo"] ; then KORSP_=" FLA KORR_OFF XX " ; fi if ["\${FILE_APP}" = "fo"] ; then KORSP_=" FLA KORR_OFF KORR_532 " ; fi if ["\${FILE_APP}" = "g"] ; then KORSP_=" 532 xx xx " ; fi if ["\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi If ["\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DYE=05 AFILE=\${FILE_APP} export FILE_APP=\${FILE_APP}d\${DYE} AFILE=\${FILE_APP} export AMAX_N=0 # number of spectra to delete export AMAX_S=70 export AMAX_E=120 # start pixel # end pixel export AMIN_V=-200 export AMIN_S=75 export AMIN_E=85 export GRE_S=10 export GRE_E=30 export GRE2_S=220 export GRE2_E=250 export OFF_S=1 export OFF_E=30 # fuer all-ep.e
export R_KORSP="1"
export R_LFIT="1"
export R_SHOW="1"
export R_FINAL="0"
over MOYEDP LIST export MAXERR_LIST="50 40 30 25 20" # Allgemeines: export SHIFT=0.0 export ZOFF=false # export ZOFF=true # fuer lfit.e: # normale Auswertung: export RES_APP=\${FILE_APP}_1 export QFLIB="xx" export LFLIB="xx" export TAB_APP="\${RES_APP}" export KONSHIFT=1 export ICHNF=180 export ICHNF=27 export ICHN_ADD=-29 export CHANNEL_A=1 export CHANNEL_B=\${ICHNF} export FACTOR_A=1.0 export FACTOR_B=1.0


```
# nur Hot-Band:
 # export RES_APP=${FILE_APP}hbs
# export LFLIB="_hb"
# export TAB_APP="_3_${RES_APP}"
   # export KONSHIFT=0
 # export ICHNF=120
# export ICHN=88
   # export ICHN_ADD=50
* export 1chm_HDD=30

* Variables for lfit.e. qflib_nls.e und lflib_nls.e (parameter for different flames);

if [ "$(LFLB)" = "xx" ] ; then

export LFIT_PE"4,35"

export LFIT_S_CONC="-0.0024752E"

export LFIT_S_CONC="78.8426"

export LFIT_S_CONC="78.8426"

export LFIT_MAX_CONC="78.1"

export LFIT_MAX_EXPC="8.1"

export LFIT_S_AXNRS="7.13"

export LFIT_S_AXNRS="7.13"

export LFIT_MAX_AXNRS="7.27"

export LFIT_MAX_AXNRS="8.45"

export LFIT_MAX_AXNRS="8.45"

export LFIT_S_CONED="0.1244"

export LFIT_S_CONCD2="0.1244"

export LFIT_S_CONCD2="0.139"

fi
   fi
  # fuer show*.e:
export MAXERR=25
export METHOD=29
   NEW=new
  APP=app
   # Spreadtest:
  export DT="xx"
export M1="xx"
 export M2="xx"
export M3="xx"
   export SPREADTEST=" ${DT} ${M1} ${M2} ${M3} "
  FLAMME="FIRST-III Referenzflamme"
#
EXP_06=" 06 ${AFILE} ${DYE}
EXP_07=" 07 ${AFILE} ${DYE}
EXP_08=" 08 ${AFILE} ${DYE}
EXP_08=" 09 ${AFILE} ${DYE}
EXP_10=" 10 ${AFILE} ${DYE}
EXP_11=" 11 ${AFILE} ${DYE}
EXP_11=" 11 ${AFILE} ${DYE}
EXP_12=" 12 ${AFILE} ${DYE}
EXP_12=" 13 ${AFILE} ${DYE}
EXP_13=" 13 ${AFILE} ${DYE}
EXP_13=" 15 ${AFILE} ${DYE}
EXP_15=" 15 ${AFILE} ${DYE}
EXP_16=" 16 ${AFILE} ${DYE}
EXP_16=" 16 ${AFILE} ${DYE}
EXP_18=" 18 ${AFILE} ${DYE}
EXP_18=" 18 ${AFILE} ${DYE}
EXP_18=" 18 ${AFILE} ${DYE}
EXP_18=" 19 ${AFILE} ${DYE}
EXP_18=" 19 ${AFILE} ${DYE}
EXP_18=" 19 ${AFILE} ${DYE}
EXP_18=" 19 ${AFILE} ${DYE}
EXP_29=" 20 ${AFILE} ${DYE}
EXP_20=" 20 ${AFILE} ${
                                                                                                                                r HAB
                                                                                                                                                                      F1.
                                                                                                                                                                                                               532 BB
                                                                                                                                                        FIRST-III 41 50 ${KORSP_} ${NEW}
FIRST-III 41 50 ${KORSP_} ${NEW}
FIRST-III 32 50 ${KORSP_} ${APP}
FIRST-III 22 50 ${KORSP_} ${APP}
FIRST-III 25 50 ${KORSP_} ${APP}
FIRST-III 25 50 ${KORSP_} ${APP}
                                                                                                                            0 107
0 107
0 95
0 80
0 62
                                                                                                                                                         FIRST-III 35 50 ${KORSP_}
FIRST-III 41 50 ${KORSP_}
FIRST-III 41 50 ${KORSP_}
FIRST-III 41 50 ${KORSP_}
                                                                                                                             0 45
                                                                                                                                                                                                                                                                    ${APP}
                                                                                                                            0 37
0 37
0 30
0 24
                                                                                                                                                                                                                                                                   ${APP}
${APP}
                                                                                                                                                        FIRST-III 38 50 ${KORSP_}
FIRST-III 44 50 ${KORSP_}
                                                                                                                                                                                                                                                                   ${APP}
${APP}
                                                                                                                              0 18
                                                                                                                                                          FIRST-III 48 50 ${KORSP_}
                                                                                                                                                                                                                                                                    ${APP}
                                                                                                                            0 12
0 3
0 1
                                                                                                                                                        FIRST-III 55 50 ${KORSP_} ${APP}
FIRST-III 10 50 ${KORSP_} ${APP}
                                                                                                                                                          FIRST-III
                                                                                                                                                                                                    8 50 ${KORSP_}
                                                                                                                                                                                                                                                                    ${APP}
                                                                                                                            0 80
                                                                                                                                                        FIRST-III 28 50 ${KORSP_} ${APP}
 # Linstellungen fuer individuelle Namelists
# SpekNr BKG T CcnN2 ConH20 ConC02 AXNRS PRESS
  # NLS_04=" 04 ${AFILE} 1600.00 54.50 0.051 0.017 8.12 0.987"
  # Kommentarstrings, die via gr.ε in die Ausdrucke eingebunden werde
  # ACHTUNG: Keine Leerzeichen im String verwenden !!
  # GR_07="TLC_1bar_Phi=2.1_r=0mm_h=5mm_Gain=90"
177
```

- Now work in **qflib** folder.
- Rename (with the data day number) and edit the name-list file (**qflibxxx.nls**): update all the values about the slit function obtained in the previous section.

a qflib1	37.nls					_1	٦×
File	Edit Search	Prefer	ences	Shell	Macro	Windows	
						H	elp
: 8.NDN							14
ICHN	= 150,	ICHNO	= 55,				- 11
RMAX	= 2344.440,	RMIN	= 2100.	,000,			- 11
DISP	= 0,7050000,	CHDISP	= 0,0000),			- 11
DLMIN	= 471.000000,	DLMAX	= 473.0	,000000			- 11
KONSHF	= 0,	SHIFT	= 0.000	00,			- 11
KONT	= 0,	T	= 290.0),			- 11
KONTR	= 0,	TR	= 300.0),	ZTR	= F,	- 11
KONP	= 0,	P	= 4.935	5,			- 11
KONC	= 0,	CONC	= 78.09	Ι,			- 11
KONSG	= 0,	SG	= 0.734	l,			- 11
KONSL	= 0,	SL	= 0.223	3,			- 11
KONG1	= 0,	61	= 0.250	0,			- 11
DLL1	= 596.00000,			0.000.00			- 11
ZPOSTCO	$N = T_{e}$	ZTRAPLR	= F,		ZLORT	= T,	- 11
KONTRAP	L = 0,	TRAPL	= 0.011	.,			- 11
KONTRAP	M = 0,	TRAPM	= 2,100),			- 11
KONTRAP	R = 0,	TRAPR	= 0,400).			- 11
AXNRS	= 7.27E-18.						- 11
CONH20	= 0,001,	CONCO2	= 0,003	3,	CONH2	= 0.0,	- 11
ZLIB	= F.	ZL	= F.		ZTRANS	= T.	- 11
ZOFF	= F.	ZO	= T.		ZSAME	= F.	- 11
ZR	= F.	ZSORT	= F.				- 11
ZXC	= T.	ZXCA	= T.		ZLOW	= T.	- 11
ZX	= F.	ZVDPHA	= T.			1	- 11
KONSAS	= 0.	SAS	= 0,000	00.		/	- 11
ALPHA2	= 3.2402E-51	RHO	= 0.022	2000. 710	W = T for pre	essure < 1.5 atm	- II
THETA	= 0,000.	PHI	= 0,000	0. 710	DW = E for pro	accura >1.5 atm	
VIPHAS	= 0.0000.	XCDE	= 1,000	0.	ow - r tor pre	essure > 1.5 dtm	
IP	= -1.	IPV	= 0.				
MAXE	= 50.		.,				
	,						. 1
-							<u>19</u>

- Run **qflib_nls.e** program to create all the filename lists to generate the library (.cnr file).
 - qflib_nls.e
 - This code creates the following outputs:
 .crn Large series for different temperatures (default every 50 K)
- Run carp-qf.e program to create the library through the already created .cnr filename list.
 carp-qf.e ""

This code creates the following outputs:

0	.crl	Spectral library
0	.zd	Input/output parameters
0	output.log	Logfile with carp- errorlist
0	kompakt.res	Selective outputs

Run anal.e program to analyze the library coefficients and write them into a table
 anal.e ""

This code creates the following outputs:

0	.cff	Input parameters
0	.cft	Table with spectra

Run clean-qf.e program to delete all the unnecessary file

 clean-qf.e

6. Creation of fit library

- Work in **Iflib** folder.
- Modify Iflibxxx.nls accordingly to slit function and AXNRS values. Change the RMAX value taking into consideration that the quick fit library and the fit library are shifted by a certain amount of pixels (default value -30. This number is found in set-all.e file mess folder under ICHN_ADD variable). To align the two libraries RMAX value should be increased (or decreased) by the RMAX value of the quick fit library multiplied by the dispersion value: it is possible to find these numbers in the qflibxxx.nls file in qflib folder. Note also that the number of pixel to fit in the fit library is higher than the quick fit library (do not change ICHN value): this implies that the dispersion value (DISP) must be half of the one found in the quick fit library.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$				nees	onen	Macio	windows	Heit
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CHN =		_					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CTILIT -	360,	ICHNO	= 38,				
DISP = 0.3525000, CHDISP = 0.0000, DLMN = 518.00000, DLMAX = 530.000000, CONSHF = 0, TT = 290.0, CONTR = 0, TR = 300.0, ZTR = F, CONTR = 0, R = 4.935, CONC = 0, CDNC = 78.3, CONSG = 0, SG = 0.734, CONSG = 0, SG = 0.734, CONSG = 0, SL = 0.223, CONSG = 0, SL = 0.223, CONSG = 0, SI = 0.223, CONSG = 0, SI = 0.223, CONTRAPH = 0, SL = 0.011, CONTRAPH = 0, TRAPL = 0.011, CONTRAPH = 0, TRAPH = 2.100, CONTRAPH = 0, STRAPH = 1, CONH20 = 0.001, CONC02 = 0.003, CONH2 = 0.0, ZLIB = T, ZL = F, ZTRANS = T, ZOFF = F, ZO = T, ZSAME = F, ZR = F, ZSQRT = F, ZNC = T, ZXCA = T, ZLOW = F, CXC = T, ZXCA = T, ZLOW = F, CXC = T, ZXCA = T, ZLOW = F, CXC = T, ZXCA = 1, ZLOW = F, CNNSAS = 0, SAS = 0.0000, ALPHA2 = 3.2402E-51, RH0 = 0.022000, ALPHA2 = 3.2402E-51, RH0 = 0.022000, ALPHA2 = 3.2402E-51, RH0 = 0.022000, ALPHA2 = 0.0000, XCDE = 1.0000, ZLOW = T for pressure < 1.5 atm ZLOW = F, D, CONSAS = 0, ACC = 0.000, HH = 0.000, IREFN0 = 137, ITEST = 0	Max =	2364.568,	RMIN	= 2100.	,000,			
DLMIN = 518,00000, DLMAX = 530,000000, CONSHF = 0, SHIFT = 0,0000, CONT = 0, T = 290.0, CONT = 0, TR = 300.0, ZTR = F, CONP = 0, P = 4.935, CONC = 0, CDNC = 78.3, CONSG = 0, SG = 0.734, CONSG = 0, SL = 0.223, CONSI = 0, SL = 0.223, CONSI = 0, G1 = 0.2500, DLL1 = 593.00000, ZPOSTCON = T, ZTRAPL = F, ZLORT = T, CONTRAPH = 0, TRAPH = 2.100, CONTRAPH = 0, TRAPH = 2.100, CONTRAPH = 0, TRAPH = 0.400, XXNRS = 7.27E-18, CONH20 = 0.001, CONC02 = 0.003, CONH2 = 0.0, ZLIB = T, ZL = F, ZTRANS = T, ZOFF = F, ZO = T, ZSAME = F, ZR = F, ZSQRT = F, ZN = F, ZVDPHA = T, CONSAS = 0, SAS = 0.0000, ALPHA2 = 3.2402E-51, RH0 = 0.022000, THETA = 0.0000, XCDE = 1.0000, ZLOW = T for pressure < 1.5 atm IP = -1, IPV = 0, MAXF = 50, CCREL = 0.100, ACC = 0.000, HH = 0.000, IREFN0 = 137, ITEST = 0	ISP =	0.3525000,	CHDISP	= 0.000)0,			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	LMIN =	518.00000,	DLMAX	= 530.0	,00000			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ONSHF =	0,	SHIFT	= 0.000)0,			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ONT =	0,	т	= 290.0),		- 2049	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ONTR =	0,	TR	= 300.0),	ZTR	= F,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ONP =	0,	P	= 4.939	5,			
$\begin{array}{llllllllllllllllllllllllllllllllllll$.ONC =	0,	CONC	= 78.3,				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ONSG =	0,	SG	= 0.734	,			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ONSL =	0,	SL	= 0.223	3,			
LL1 = 593.00000, POSTCON = T, ZTRAPLR = F, ZLORT = T, ONTRAPL = 0, TRAPL = 0.011, ONTRAPM = 0, TRAPM = 2.100, ONTRAPM = 0, TRAPR = 0.400, XNRS = 7.27E-18, ONH20 = 0.001, CONC02 = 0.003, CONH2 = 0.0, LIB = T, ZL = F, ZTRANS = T, OFF = F, ZO = T, ZSAME = F, R = F, ZSORT = F, XC = T, ZXCA = T, ZLOW = F, X = F, ZVDPHA = T, ONSAS = 0, SAS = 0.0000, LPHA2 = 3.2402E-51, RH0 = 0.022000, HETA = 0.0000, PHI = 0.0000, ZLOW = T for pressure < 1.5 atm DPHAS = 0.0000, XCDE = 1.0000, ZLOW = F for pressure > 1.5 atm P = -1, IPV = 0, AXF = 50, CCREL = 0.100, ACC = 0.000, HH = 0.000, REFN0 = 137, ITEST = 0	ONG1 =	0,	G1	= 0.250)0,			
POSTCON = T, ZTRAPLR = F, ZLORT = T, ONTRAPL = 0, TRPL = 0.011, TRAPL = 0.011, ONTRAPM = 0, TRAPL = 0.400, TRAPR = 0.400, XNRS = 7.27E-18, ONH20 = 0.001, CONC02 = 0.003, CONH2 = 0.0, ONH20 = 0.001, CONC02 = 0.003, CONH2 = 0.0, LIB = T, ZL = F, ZTRANS = T, OFF = F, ZO = T, ZSAHE = F, R = F, ZXCA = T, ZLOW = F, XX = F, ZVDPHA = T, JLOW = F, X = F, ZVDPHA = T, JLOW = T for pressure < 1.5 atm	LL1 =	593.00000,						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	POSTCON =	Τ,	ZTRAPLR	= F,		ZLORT	= T,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ONTRAPL =	0,	TRAPL	= 0.011	.,			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ONTRAPM =	0,	TRAPM	= 2.100),			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ONTRAPR =	0,	TRAPR	= 0.400),			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	XNRS =	7.27E-18,						
LIB = T, ZL = F, $ZTRANS$ = T, OFF = F, $Z0$ = T, $ZSAHE$ = F, R = F, $ZSQRT$ = F, XC = T, $ZXCA$ = T, $ZLOW$ = F, X = F, $ZVDPHA$ = T, $ZLOW$ = F, X = F, $ZVDPHA$ = T, $ZLOW$ = F, LPHA2 = 3.2402E-51, RH0 = 0.002000, $ZLOW$ = T for pressure < 1.5 atm DPHAS = 0.0000, PHI = 0.0000, $ZLOW$ = F for pressure < 1.5 atm DPHAS = 0.0000, XCDE = 1.0000, $ZLOW$ = F for pressure > 1.5 atm P = -1, IPV = 0, AXF = 50, CCREL = 0.100, ACC = 0.000, HH = 0.000, REFNO = 137, ITEST = 0	ONH20 =	0.001,	CONCO2	= 0.003	3,	CONH2	= 0.0,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	LIB =	Τ,	ZL	= F,		ZTRANS	= T,	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	OFF =	F,	ZO	= T,		ZSAME	= F,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	R =	F,	ZSQRT	= F,				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	XC =	Τ,	ZXCA	= T,		ZLOW	= F,	
ONSAS = 0, SAS = 0.0000, / LPHA2 = 3.2402E-51, RH0 = 0.022000, ZLOW = T for pressure < 1.5 atm	X =	F,	ZVIDPHA	= T,			1	
LPHA2 = 3.2402E-51, RH0 = 0.022000, ZLOW = T for pressure < 1.5 atm HETA = 0.0000, PHI = 0.0000, ZLOW = T for pressure < 1.5 atm DPHAS = 0.0000, XCDE = 1.0000, ZLOW = F for pressure > 1.5 atm P = -1, IPV = 0, AXF = 50, CCREL = 0.100, ACC = 0.000, HH = 0.000, REFNO = 137, ITEST = 0	ONSAS =	0,	SAS	= 0.000	0,			
HETA = 0.0000, PHI = 0.0000, ZLOW = For pressure < 1.5 atm DPHAS = 0.0000, XCDE = 1.0000, ZLOW = F for pressure < 1.5 atm P = -1, IPV = 0, AXF = 50, CCREL = 0.100, ACC = 0.000, HH = 0.000, REFNO = 137, ITEST = 0	LPHA2 =	3.2402E-51,	RHO	= 0.022	2000,			
DPHAS = 0.0000, XCDE = 1.0000, ZLOW = F for pressure > 1.5 atm P = -1, IPV = 0, AXF = 50, CCREL = 0.100, ACC = 0.000, HH = 0.000, REFNO = 137, ITEST = 0	HETA =	0.0000,	PHI	= 0.00	00, 210	W = 1 for pre	ssure < 1.5 atm	
P = -1, IPV = 0, AXF = 50, CCREL = 0.100, ACC = 0.000, HH = 0.000, REFND = 137, ITEST = 0	DPHAS =	0.0000,	XCDE	= 1.000)0, <u>210</u>	W = F for pre	ssure > 1.5 atm	6
AXF = 50, CCREL = 0.100, ACC = 0.000, HH = 0.000, REFND = 137, ITEST = 0	P =	-1,	IPV	= 0,				
CCREL = 0.100, ACC = 0.000, HH = 0.000, REFND = 137, ITEST = 0	AXF =	50,						
REFND = 137, ITEST = 0	CCREL =	0.100,	ACC	= 0.000),	HH	= 0.000,	
	REFNO =	137,	ITEST	= 0				

- Run **lflib_nls.e** program to create all the filename lists to generate the library (.cnr file).
 - o Iflib_nls.e
 - This code creates the following outputs:
- .cnr Large series for different temperatures (default every 50 K)
- Run **carp-lf.e** program to create the library through the already created .cnr filename list.
 - carp-lf.e ""
 - This code creates the following outputs:
- Iib Large spectral libraries for different temperatures
- Run clean-lf.e program to delete all the unnecessary file

• clean-lf.e

A quick method to check if the two libraries are well aligned is to create some theoretical spectra (one every 50 K) using the QFit library and try to fit them using the LFit library. The initial temperature guess is set on purpose 200 K above the right temperature to force the LFit code to do some iterations. To do so, run the code **lfit_qlfit.e** in **lfit** folder. Results are found in **qflib** folder:

- qflibxxx.dat
- qflibxxx.lft
- qflibxxx.log
- qflibxxx.res

If the two libraries are well aligned the **F(Sum)** should be low and the temperatures very close. Check this on the **.log** file. Also, it is possible to see the fit using spi program:

- spi
 chd qflibxxx.lft
- 3. @fit
- 4. gin

7. Fit the spectra

- Work in **mess** folder
- Edit **ne all.e** program (code to enable the fit to all single shots of every data point remember: each data point contains 1200 single shots).

All the lines with **#** are commented and not executed. **EXP_**xx is the data point followed by run number.

💽 al	l.e							
<u>F</u> il	e <u>E</u>	dit	<u>S</u> earch	Preferences	Shell	Macro	<u>W</u> indows	He
#		0.0.4	0.0 0000					-
# ve #	rs10n	2.0 1	9-нрг-2000 					-
PROG # Va . se	="all- riable t-all.	-ep.e" endefi .e	nitionen l	aden:				
LOGF	ILE=`ł	pasena	me \$PROG .	e`.log				
# ==	P_13=	`basen	ame "\${EXP	_13}" app`new				
expo expo expo	rt FIA rt LAS rt RES	RST="1 ST="12 SFILE_1	" 00" CREATE="-c	re"	Execute	Run (EXP)	06	
if	[1 -e	ea 1 1	: then					
+ (00			a K					
# \${ # # \$ { # \$ } { #	PROG} PROG} PROG} PROG} PROG} PROG} PROG} PROG} PROG} PROG}	\${EXP \${EXP \${EXP \${EXP \${EXP \${EXP \${EXP \${EXP \${EXP \${EXP \${EXP \${EXP \${EXP \${EXP \${EXP	08 09 10 11 12 13 14 15 16 17 18 19 20 }		Comr	nented lin	e (do not exec	cute EXP 07
exit echo echo date exit	^и жақсқа ^и жақсқа ^и жақсқа	****** ******	********* *** Comman ******	**************** d file \$0 finish ******	******** ed ***** *****	******	8年末日 1 1 1 1	
<u> </u>								
dit ne	e set	-all.e	e:					
0	AM	AX_V	=	filter for too hi	gh intensi	ty / camer	a saturation (m	aximim valu
0	AM	AXN	=	# of spectra to	delete			
0	AM	AX_S	=	start point (pixe	el #) wher	re to apply	the max filter	
0	AM	AX_E	=	end point (pixe	l #) where	e to apply	the max filter	

• **AMIN_V** = filter for too low intensity / camera noise (minimum value)

0	AMIN_S	=	start point (pixel #) where to apply the min filter
0	AMIN_E	=	end point (pixel #) where to apply the min filter
0	R_KORSP	=	correct spectra (bkg, dye curve) if = "1" (skip process if = "0")
0	R_LFIT	=	fit spectra if = "1" (skip process if = "0")
0	R_SHOW	=	show results (table) if = "1" (skip process if = "0")
0	R_FINAL	=	summarize results and statistics if $=$ "1" (skip process if $=$ "0")
0	MAXERR_LIST	=	maximum F(Sum) error to reject spectra in statistics
0	ICHNF	=	# of pixels used to fit by fit library (Iflib): 180 is default value
0	ICHN	=	# of pixels sikipped from data to library (use the same # used in
	standxxx_1.nls in apfi	t folder)	
0	ICHN_ADD	=	# of pixels added to match quick fit (smaller) to regular fit library

Remember to list all the run # in the experiment at the end of the program otherwise the code stops at the last EXP_xx. Also, it is possible to edit the measurement position modifying the values under the columns **r** (radial position) and **HAB** (height above burner).

Ella Edit Saarch Proferences Shell Maara Mindows	
# set-all.e 28-Mar-00	<u></u>
# mehr soviel uebergeben werden mussen. #	
<pre># Version 2.0 19-Apr-2000 # Version 2.1 20-Apr-2000 # Version 2.2 18-Jul-2000 # "export ist wohl gar nicht noetig?! # 12-Jun-2012 change in lfit.e: FILE_APP taken from \$2 and RESAPP=\${FILEAPP}\${RES_APP}</pre>	
# Leerstrings mit "xx" kennzeichnen!!!	
<pre># fuer korsp-ep.e: export FILE_APP}"= "bo"] ; then KORSP_=" BLO KORR_OFF xx " ; fi if ["\${FILE_APP}" = "b"] ; then KORSP_=" BLO xx xx " ; fi if ["\${FILE_APP}" = "fo"] ; then KORSP_=" FLA Xx xx " ; fi if ["\${FILE_APP}" = "fo"] ; then KORSP_=" FLA KORR_OFF xx " ; fi if ["\${FILE_APP}" = "g"] ; then KORSP_=" FLA KORR_OFF XX " ; fi if ["\${FILE_APP}" = "g"] ; then KORSP_=" 532 XX xx " ; fi if ["\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 532 KORR_OFF xx " ; fi DVE=05 AFILE=0\${FILE_APP}" = "g"] ; then KORSP_=" 1" nicht aktiv export IF_KORR_ANNX="" = " aktiv, ="1" nicht aktiv export ANNX_V=50000</pre>	
<pre># fuer all-ep.e export R_KORSP="1" export R_LFIT="1" export R_SHOW="1" export R_FINAL="0" export R_FINAL="0" export HAXERR_LIST="50 40 30 25 20"</pre>	
<pre># Allgemeines: export SHIFT=0.0 export ZOFF=false → vertical shift fixed # export ZOFF=true → vertical shift fitted</pre>	
<pre># fuer lfit.e: # normale Ausuertung: export RES_APP=3{FILE_APP}_1 export LFLIB="xx" export LFLIB="xx" export ICHNE=180 export ICHNE=120 export ICHNE=22 Fit starts at that pixel</pre>	
export CHANNEL_A=1 Export CHANNEL_B=\$(ICHNF) Export FACTOR_A=1.0 Export FACTOR_B=1.0 Export FACTOR_C=1.0 Weight for ErrSum in 1 st region 0 < #pixel < start fit Weight for ErrSum in 2 nd region start fit < #pixel < end fit export FACTOR_C=1.0 Weight for ErrSum in 2 nd region start fit < #pixel < end fit export FACTOR_C=1.0 Export FACTOR_C=1.0 Expo	

<pre># nur Hot-Band: # export RES_APP=\${FILE_APP}hbs # export LFLIB="_hb" # export TAB_APP=".3_\${RES_APP}" # export TAB_APP=120 # export ICHN=120 # export ICHN=88 # export ICHN_ADD=50</pre>	-	£.
<pre># Variables for lfit.e, qflib_nls.e und lflib_nls.e (parameter for different flames): if ["\${LFLIB}" = "xx"] ; then export LFIT_P="4.935" export LFIT_S_CONC="78,8426" export LFIT_S_CONC="70.00247529" export LFIT_MIN_CONC="72.8" export LFIT_MAX_CONC="78.1" export LFIT_MAX_CONC="78.1" export LFIT_AXNRS="7.103" export LFIT_S_AXNRS="0.000555294" export LFIT_MAX_MAXNRS="7.27" export LFIT_MAX_MAXNRS="8.45" export LFIT_S_CONH20="0.01756235" export LFIT_S_CONH20="0.012644" export LFIT_S_CONH20="0.1244" export LFIT_S_CONH20="0.1244" export LFIT_S_CONC02="0.01608" export LFIT_S_CONC02="0.01133" fi</pre>		
# fuer show*.e: export MAXERR=25 export METHOD=29 NEW=new APP=app		
<pre># Spreadtest: export JI="xx" export M1="xx" export M2="xx" export M3="xx" export SPREADTEST=" \${DT} \${M1} \${M2} \${M3} " #</pre>		
FLAMME="FIRST-III Referenzflamme"		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
# Einstellungen fuer individuelle Namelists # SpekNr BKG T ConN2 ConC02 AXNRS PRESS		
# NLS_04=" 04 \${AFILE} 1600.00 54.50 0.051 0.017 8.12 0.987"		
# Kommentarstrings, die via gr.e in die Ausdrucke eingebunden werde # ACHTUNG: Keine Leerzeichen im String verwenden !!		
# GR_07="TLC_1bar_Phi=2.1_r=0mm_h=5mm_Gain=90"		
	7	4

- Run **all.e** to run the fitting program. This code save all the corrected spectra (bkg, dye curve) inside **mess** folder:
 - s3a.....cor = average of corrected single shots
 - s3s.....cor = corrected single shots

While all the fitted spectra are saved into **lfit** folder:

0	.lft	=	big	file con	taining c	orrected	spectru	m, fit an	d differe	nce (multij	olied by 100)
	for each	single sr	10t (3 col	umns)							
0	.sta	=	tab	le conta	aining al	l the te	mperatu	re fitting	statistic	cs relative	to different
	methods	s; it also i	includes ⁻	the num	per of sp	ectra reje	ected by	filters			
0	.res	=	res	ults file: i	it contair	ns tempe	rature ar	nd statisti	cs inform	nation	
Resultfile:	s3s13 ⁻	706gd0!	5_1.res	5							
11-Jul-16 1 :50	6:53:30	5 s3s1:	3706gd(95 HTV	/flex0	P3-FL0	X FIRS	T-III,	x=0,z	=107;532	2:41,Dye
Method	5	6	7	20	21	26	27	29	31	32	
	h/c (ch/cc	h/cc	75%	50%	6or7		LFIT	Fsum	Conc	
Results	942	942	942	938	941	942	942	942	942	942	
Sigma K	200	202	198	246	217	200	198	191	512	1	
~ %	13	13	13	15	14	13	13	12	75	1	
T-mean	1518	1503	1515	1606	1601	1514	1515	1570	678	75	
T-mp	1449	1438	1446	1526	1540	1448	1447	1507	305	75	
T-5%	1249	1240	1250	1239	1292	1247	1249	1313	160	66	
(Diff.)	-200	-198	-196	-287	-248	-201	-198	-194	-145	-9	
T-95%	1920	1905	1910	2049	2010	1909	1909	1952	1789	84	
(Diff.)	471	467	464	523	470	461	462	445	1484	9	
T-min	1022	1033	1025	967	1031	1033	1036	1126	66	73	
T-max	2329	2441	2355	2604	2446	2355	2355	2372	2482	76	
total Resul	ts:	filte	er :	12	3 4	45	6	78			
1200		Ħ	40	55	0 (9 0	0	0 0			
maxerrsum:	+2.50	ЭE+01,	reje	cted:	207						

To open the .res file it is necessary to use the **qui** program (similar to spi).

Once opened the new window, use the **open** command to read the file:

• open [filename].res

To see the tabled results use **show** command: it show a table with similar but more complete information than the .sta file.

Since the table is very large, filtering the results by fitting methods may simplify the visualization; to do that use **set mask** command:

set mask [method # method # ...]
 e.g. set mask [20 27 29 31]

∭ xterm									- O ×
11-Jul-2016	16:58								
Experiment	× / mm	h / mm	Tmean / K	Sigma / K	Tmp /K	Т95-Ттр / К	T5-Tmp / K	N	maxerr
13706gd05_1	 1								
	0	107	1579	200	1509	472	-198	1149	.000
13706gd05_1	1 	1	1576	194	1508	457	-192	1037	50.0
						-			
13706gd05_1	1			• • • • • • • • • •		• ******		 Insummer 	• • • • • • • • • • • • •
1			1574	193	1507	453	-191	1012	40.0
13706ad05									
1	Î I	- I	1572	193	1507	449	-193	977	30.0
						-			
13706gd05_1	1			• • • • • • • •				•. •.	• • • • • • • • • • • • • • • • • • • •
			1570	191	1507	445	-194	942	25.0
12706 ad05								1	
[13706gu05_]	i ı	1	1569	191	1506	447	-194	914	1 20.01
1									
vtmess@mc:vt	tmess/s	spray/s	3a137/l	fit_\$					a a

• **_1.tab** = table showing the filtering results

_1_mxx.tab = table showing the statistics about temperature measurement relative to maximum error F(Sum) = xx (it could be 0 for no filtering or 25, as default value, or any value chosen by the user)

11-Jul-2016	16:58									
Experiment	×	h	Tmean	Sigma	Tmp	T95-Tmp	T5-Tmp	I N	maxerr	
	/ mm	/ mm	/К	/ K	7 K	7 K	/ K			
13706gd05_:	1									
-	0	107	1570	191	1507	445	-194	942	25.0	
vtmess@mc:vi	l/stmess/s	spray/s	 3a137/l [.]	fit_\$ 📕						

vtmess@mc:vtmess/spray/s3a137/lfit_\$ cat s3s137xxgd05_1_m25.tab 11-Jul-2016 16:58

• _1_mxx_fsum.tab = table showing the statistics about maximum error F(Sum)=xx

**** Fsum ****

Experiment	× /mm	z / mm	Fmean / 0.01	Sigma / 0.01	Fmp / 0.01	F95-Fmp / 0.01	F5-Fmp / 0.01	N	maxerr
13706gd05_	1								
1	0	107	2213	6319	305	4706	-138	1149	.000
1								I	I

- _1_mxx_shift.tab = table showing the statistics about the horizontal shift relative to maximum
- error F(Sum)=xx
 _1_mxx_ymax.tab = table showing the statistics about the signal maximum peak relative to

maximum error F(Sum)=xx

• .log = log file containing all input and fitting value information

File	Edit	Se	arch	Profe	rence	e Sh	oll k	lacro	Mine	lowe			Hole
<u>r</u> ile	Ean	<u></u>	arch	Freit	ence	a an	en N	acro	wind	10.42			<u>n</u> elp
.OG-Fil)ate: 1	.e: s3s1 .1-Jul-1	.3706 .6 16	9d05_1.1 :53:37	09	QUI Ver	sion: V	3.4 AIX	(ohne f	AXMD)				8
pectra	n: s3s13	7069	d05.cor		QFLIB:	qflib13	7.cff	LFLIB	: lflib	137.li	0		
oncent	ration				(CONC):			78,84	%				
(= CON	IC + S_C	ONC	* T)	20	(S_CONC): NC\+		002	475 %				2
max. a min. a	allowed	conc	entratio	in In	(MIN_CO	NC):		72,80	2				
lonreso	nant ba	ckgr	ound		(AXNRS)	:		7,000	E-18 c	m3/erg	1000		
(= HXN max, a	KS + S_ illowed	HXNR nonr	S ↑ I) . backor	ound	(S_HXNR (MAX_AX	S): NRS):		.0005	E-18 c	3 cm3/ei cm3/erg	°9		
min. a	llowed	nonr	. backgr	ound	(MIN_AX	NRS):		7.270	E-18 c	m3/erg			
Temperature (Shift (Pressure ((1): (SHIFT)			300 K	channe	ls				
				(P):	•		4.935	atm					
lo. of	spectra	l ch	annels str.sha	nnala	(ICHNF)	1		180					
hannel	skipped s for w	eigh	ting of	fsum a	and scal	ing		21					
					(CHANNE	L_A):		100					
actors	; for we	ight	ing of f	sum	(FACTOR	L_B): _A):		+1,000)E+00				
		35.053			(FACTOR	_B):		+1,000)E+00				
it Off	set				(THETUR	_c):		+1,000 FALSE	JE+00				
locurac	y				(ACCREL):		.1000					
lax. no FIT ∞≏). of it thod fo	erat r st	ions art temp	100	(MAXE):)•		50 26					
liff. s	tarttem	P+ =	QFIT te	mp.	(DIFF):	·•		,0000	К				
itting	contro	l pa	rameter		(KUNT) -			activ					
Conce	ntratic	n f	itting		(KONC):			NOT a	stive				
Press	ure	f c+ c	itting		(KONP):	\ .		NOT ac	ctive				
opect	a un sru	16.1	reeing		(RONOUL)	/•		accive	2				
#	Time	Knt	Fsum	т	Axnrs	Conc	Р	Shift	ichn	0F-T	Ymax		
1 16	:53:37	6	36.027	1753	7.973	74.50	4.935	.1663	180	1654	800		
2 16	:53:37	11 11	88,803	1409	7.964	75.56	4,935	.3198	180	1291 1682	570		
4 16	:53:38	8	10,632	1395	7.775	75.39	4,935	.0934	180	1258	2640		
5 16	:53:38	11	2,5256	1706	7.947	74.62 75.68	4.935	0395	180	1684 :	678		
7 16	:53:38	10	5,7459	1520	7.844	75.08	4,935	.0731	180	1405	3979		
8 16 9 16	:53:39	8	47,462	1412	7,784	75,35 75,27	4,935	.3139	180	1326	1100		
10 16	:53:39	7	23,041	1570	7,872	74,96	4,935	-,0506	180	1446	1292		
11 16	:53:40	12	96,661	1826	8,014	74.32	4,935	-,8203	180	1847	473		
13 16	153:40	7	3,2360	1592	7.884	79,82	4,935	-1,657	180	1506 :	11754		
14 16	:53:40	7	4,3463	1511	7.839	75.10	4,935	.3446	180	1451	6211		
15 16	153:41	2	4,7094	1549	7.850	75.18	4,935	-,2308	180	1528	7860		
17 16	:53:41	5	7.3452	1877	8.042	74.20	4,935	1674	180	1864	2433		
18 16	53:41	4	9,6808	2210	8.227	73.37	4.935	.0000	180	2203	2037		
20 16	:53:41	7	2,7282	1368	7.760	75.46	4,935	0688	180	1350	5139		
21 16	:53:42	5	5,6328	1863	8.035	74.23	4.935	2676	180	1847 1400	2542		
23 16	:53:42	5	2,9861	1555	7,863	74,99	4,935	-,1145	180	1548	1350		
24 16	:53:42	7	1,6082	1417	7,787	75.34	4,935	.0499	180	1333 :	23504		
25 16	:53:43	12	39,296	1636	7,908	74.07	4,935	,4869	180	1510	704		
27 16	:53:43	6	2,4291	1800	8,000	74.39	4,935	.1759	180	1741	9626		
28 16 29 16	153:43	8 12	16,266	1445	7,803	75,19	4,935	-,2209	180	12/3	2695		
30 16	:53:43	6	2,6595	1855	8,030	74.25	4,935	,2588	180	1807	5278		
31 16	:53:44	8	19,319	1663	7,923	74.73	4.935	-3356 8667	180	1612 2112	1646		
33 16	:53:44	7	8,2372	1532	7,851	75.05	4,935	,1946	180	1414	2343		
34 16	:53:44	7	4.0500	1636	7,908	74.79	4.935	-,2637	180	1557	9774		
30 TP	+57+45	10	2,7085	1800	7,999	75.45	4,935	,56099	180	1748	9935		
37 16	100140			- CO - CO - U - S - U - S - C			1	10000	100 C	121222077			

• .dat = output of results; it also show differences in fit methods; note that the values of Fsum and Shift are multiplied by 100: this is because the code requires only integers numbers

sesi	3706gd	05_1.iat					
ile	Edit	Search	Preferences	Shell	Macro	Windows	Hel
ogram	versio	on during d	ata evaluation: V	3.4 AIX	(ohne AXMD)	15-May-13 15:35:02	
sul+£	ilat a	2-13706-005	1 noo				
-Jul-	16 16:5	53:36 s3s13	_1,055 706qd05 HTVflex0	P3-FLOX	FIRST-III.	x=0.z=107:532:41.Due:50	
1841303	550.000 P			35000000000000	1984-1010-1010-0016		
			Method				
# F		6 /	20 21 26 75% 50% 6am7	27	29 31		
1.0	29 1	1730 1654	1753 1921 1654	1654	1753 3603	17	
20	29 1	1387 1291	1338 1339 1291	1291	1409 8880	35	
30	0 1	1607 1682	1762 1703 1682	1682	1736 491	32	
40	0 1	1339 1258	1519 1491 1258	1258	1395 1063	9	
50	0 1	1534 1584	1611 1630 1684	1684	1706 253	-4	
7 0	23 1	1504 1405	1636 1626 1405	1405	1200 10742	7	
80	29 Î	1363 1326	1267 1526 1326	1326	1412 4746	31	
9 0	0 1	1398 1301	1506 1484 1301	1301	1442 877	-14	
10 0	0 1	1546 1446	1816 1698 1446	1446	1570 2304	-5	
11 0	29 1	1965 1847	2144 1995 184/	1847	1826 9666	-82	
12 0	29 1	1608 1506	1672 1738 1506	919 1506	1221 36647	-166	
14 0	ŏ 1	1427 1451	1532 1600 1451	1451	1511 435	34	
15 0	Ô 1	1447 1528	1561 1506 1528	1528	1549 471	-27	
16 0	0 1	1446 1431	1435 1554 1431	1431	1481 443	-23	
17 0	0 1	1866 1864	1676 1875 1864	1864	1877 735	-17	
18 U	0 2	2241 2205	-1 2207 2203	2203	2210 968 1752 746	77	
20 0	ŏ 1	1348 1350	1327 1381 1350	1350	1368 273	-7	
21 0	Õ 1	1935 1847	1872 2021 1847	1847	1863 563	-27	
22 0	0 1	1486 1486	1930 1864 1486	1486	1628 1923	46	
23 0	0 1	1461 1548	1584 1456 1548	1548	1555 299	-11_	
24 U 25 0	0 1	1070 1005	1388 1458 1555 1766 1064 1606	1555	1417 161 1605 1016	5	
26 0	29 1	1571 1510	1618 1714 1510	1510	1636 3930	49	
27 0	0 1	1761 1741	1932 1938 1741	1741	1800 243	18	
28 0	0 1	1243 1273	1706 1556 1273	1273	1445 1627	106	
29 0	0 1	1336 1340	1719 1512 1340	1340	1474 1145	-22	
30 U 71 O	0 1	L//9 180/	1924 1958 1807	1807	1855 266 1667 1972	26	
32 0	ŏ ź	2038 2112	2013 2285 2112	2112	2181 826	87	
33 0	0 1	1442 1414	1598 1526 1414	1414	1532 824	19	
34 0	0 1	1596 1557	1780 1663 1557	1557	1636 405	-26	
35 1	0	0 0	0 0 0	0	0 0	0	
35 U 37 O	0 1	1777 1749	1468 1455 1285	1285	1378 264	07 61	
38 0	ŏ 1	1556 1561	1400 1600 1561	1561	1590 790	40	
39 0	Õ 1	1586 1606	1718 1696 1606	1606	1659 526	35	
40 0	0 1	1359 1268	1443 1530 1268	1268	1426 937	69	
41 0	0 1	1446 1491	1499 1504 1491	1491	1522 213	14	
42 0	0 1	1958 1492	1495 1623 1492	1492	1295 1400	41	
45 0	0 1	1343 1314	1644 1533 1314	1314	1448 950	7	
45 0	0 1	1413 1365	1844 1612 1365	1365	1520 821	24	
46 0	0 1	1538 1555	1338 1493 1555	1555	1541 870	10	
47 0	0 1	1592 1511	1423 1615 1511	1511	1547 604	-32	
48 0	0 1	1482 1467	1595 1613 146/	1467	1560 1014	54	

• mxx_his.clidat = histogram plot relative to maximum error F(Sum)=xx

To visualize the histogram use **charli** command: o **charli [filename without extension] xw**

Note that the histogram could be also obtained in ASCII format by activating $R_{FINAL} = '1'$ in set-all.e program

To check the quality of the fit, it is useful to use the **spi** code on **.lft** file (remember to type first **chd** and copy the filename to change the default values); then the command **@fit** display the results of the first 20 data (in principle 60 data since each single points consists in 3 columns as explained before) on the screen. To see the following data, use the command **gin –next60**. The visualization of the spectra is also useful to understand the quality of the fit and the type of filtering and the type of threshold to apply. Each plot displays the temperature value and some information about the rejection of the data point from the statistical analysis:

ווכ	au	υuι	the rejection c	
	0	F1	=	filtered for too low counts (close to background level)
	0	F2	=	filtered for too high counts (camera saturation)
	0	т	=	Threshold for a too high F(Sum) (bad fit)

As alternative you can use the **show-fit.e** command:

• show-fit.e [name of file] ([xmin] [ymin] [ymax] optional)

Based on these numbers, the .tab file and the visualization of the fit it is possible to evaluate the quality of the spectra and eventually change the threshold parameters (rarely the fitting method) to obtain better results. Iteration on the used parameters may occur.

Usually one of the reasons of a bad fit is a bad horizontal shift; the code is not good in fitting temperature and shift at the same time, so providing the exact shift (\pm 1 pixel) will improve a lot the fit and decrease the F(Sum) value. To change the starting position it is necessary to edit ICHN value in **set_all.e** program inside **mess** folder.

Sometimes the criteria to exclude one spectrum from the fitting (because the signal is too low or the signal saturates the camera) are not well set for the experiment. To modify these criteria, edit lfit.e:

=

- set filter 0
- how many and which type of filters are in use
- set fparm 1 0 set fparm 2 0
- filtered for too low counts (250 default value) filtered for too high counts - saturation (64000 default value): this
- = filter takes into account also the bkg subtraction and the dye curve correction: so, this value could be lower than the "nominal" 65000 counts for camera saturation.

Note that it is possible to convert each single column of data from .Ift file to ASCII file; this could be useful to export some spectra on Windows machine and plot them. However, this procedure can convert and save only one column per time.

Use spi program and open the .lft file as explained above.

Then use the command:

- **load –mmf** x where x is the column # (remember: for each measurement point there are 3 colums: data, fit and difference * 100)
- **save** name**.ascii asc** saves the selected column as ASCII with the chosen name

It is also possible to fit the average of the spectra instead of the individual single shots. In lfit.e replace the "s" in the base filename with an "a".

Finally create and save the final results (final table and histograms) in ASCII file, readable on Windows machine. Modify **showfinal.e** in **Ifit** folder:

0	AFILE	=	last part of the basenamefile
0	MAXERR	=	firlter for maximum err(Sum)

Remember to list all the run # in the experiment at the end of the program otherwise the code stops at the last #.

	Edit	$\underline{S} earch$	Preferences	Shell	Macro	Windows	Ŀ	lelp
shou Disp 25-1 load	v.e S playstad Oct-99 a variable ess/set.e	5-Aug-98 istic of r so with sp definitic	result file peadtest pns:					
d \${D JM=00	RLFIT}							
F te: NUM: if ti fi fi XVAL YVAL YVAL MAXI MAXI MAXI MAXI MAXI MAXI MAXI MAXI	t \$# -9; \${1} 1 "\${2; en FILE=\${; se FILE="" =\${4} :\${5} :RR1=\${7; :RR2=\${8; :RR3=\${9; :RR4=\${14; :RR3=\${14; :RR	<pre>> 6 ; then " = "ox"] } </pre>	I					
se cho cho cho cho xit	use: \$0	<number> < <maxer <name< td=""><td>(add to filename) r1> (maxerr2> <n of tab file> <de< td=""><td>> <> <x-c maxerr3> elta-T> <</x-c </td><td>)rt> <y-ort) <maxerr4> < (test M1> <)</maxerr4></y-ort) </td><td>> <z-ort> " (maxerr5> " test M2> <test m3="">"</test></z-ort></td><td></td><td></td></de<></n </td></name<></maxer </number>	(add to filename) r1> (maxerr2> <n of tab file> <de< td=""><td>> <> <x-c maxerr3> elta-T> <</x-c </td><td>)rt> <y-ort) <maxerr4> < (test M1> <)</maxerr4></y-ort) </td><td>> <z-ort> " (maxerr5> " test M2> <test m3="">"</test></z-ort></td><td></td><td></td></de<></n 	> <> <x-c maxerr3> elta-T> <</x-c)rt> <y-ort) <maxerr4> < (test M1> <)</maxerr4></y-ort) 	> <z-ort> " (maxerr5> " test M2> <test m3="">"</test></z-ort>		
i								

Other filtering options are available: check the user manual or contact Dr. Lückerath for further details. One option is to filter unbalanced cold and hot part of Nitrogen spectrum once the measurement was performed in a region where hot and cold spectra are simultaneously present: in this case the fit would be very poor even if the err(Sum) is low. The filter check the difference in temperature between two different methods and discard the measurement if the discrepancy is a above an imposed threshold.

0	TEST_T	=	maximum temperature difference											
0	TESTM1	=	#	of	method	to	compare	with	(usually	use	26	which	is	the
	combination of method 6 – cold hot/cold cold – and method 7 – hot / cold cold-)													
0	TESTM2	= fitting method (default 29)												

Then go to **mess** folder and enable in **set.e** only **R_FINAL="1"** (set to "0" all the other R_ parameters). Enable all the run # you want to process in **all.e** and run all.e for the last time.

The final table and histograms are created in **lfit** folder; however the table is not designed for an easy import in excel (or origin), so to remove the table borders, run **replace_tab.e**:

replace_tab.e [tab name without extension]

Sometimes check the status of the MC machine memory since the storage is limited. To do so use the **dfu** command directly in any folder. If the memory is full, create a compressed backup file (.tar) in data1 partition:

• tar -cvf /data1/cv/vtmess/[name of the file].tar [name of the folder]

Once the tar file is completed, copy it on Windows through a FTP program as backup file and free both data1 and data2 memory.

8. Print results

It is possible to print directly from the MC machine:

- export RZ_POST = vt-p-05
- echo \$RZ_POST

or from charli:

- charli xw
- charli z2su

or from gino:

- gino –noopt -pform z2su -nodash
- gino –opt –pform xw
- gino –ps

print on screen print on printer

print on printer back to screen alternative method for printer