257 research outputs found

    Development of a Multi-component based Methodology for the Simulation of Reacting High Injection Pressure Diesel Sprays☆

    Get PDF
    Abstract Modern Diesel engines are attractive for fuel economy and performances but they are suffering from increasingly strict emission standards. Therefore the investigation of the injection and combustion processes are mandatory. This paper focuses on the development of a multi-component fuel based methodology for the simulation of non-reacting and reacting high injection pressure Diesel sprays. In multi-dimensional modeling fuels are represented predominantly by single components, such as n-Dodecane for Diesel, and this is a limitation in their ability to represent real fuels which are blends of hundreds components. This study outlines a method by which the fuel composition is represented by means of a Discrete Multi-Component (DMC) model approach in order to improve the prediction of the vaporization behavior of high injection pressure Diesel sprays. A testing blend of 6 hydrocarbons is taken into account and a reduced one is developed in order to reduce the computational cost of the CFD simulations while maintaining the advantages due to a multi-component description of the mixture. The CFD methodology is developed within Star-CD commercial code while particular care is also dedicated to the prediction of the atomization and secondary breakup processes. At the nozzle exit the atomized droplets are predicted by a primary breakup approach which is able to take into account the cavitation phenomena and the turbulent effects. The atomization model is based on a simplified approach that is able to evaluate the effects of the nozzle geometry. The preliminary investigations are performed in a constant volume vessel, validating the numerical parameters against experimental data in order to correctly reproduce spray vaporization behavior. Then, to illustrate the important differences between the vaporization characteristics of a multi-component mixture compared to a mono-component one, the CFD methodology is tested investigating the in-cylinder combustion process of a 4 cylinders, Common Rail Diesel engine of current production

    A Methodology to Improve Knock Tendency Prediction in High Performance Engines

    Get PDF
    AbstractThe paper presents a comprehensive numerical methodology for the estimation of knock tendency in SI engines, based on the synergic use of different frameworks [1]. 3D-CFD in-cylinder analyses are used to simulate the combustion and to estimate the point-wise heat flux acting on engine components. The resulting heat fluxes are used in a conjugate heat transfer model in order to reconstruct the actual point-wise wall temperature distribution. An iterative loop is established between the two simulation realms. In order to evaluate the effect of temperature on knock, in-cylinder analyses are integrated with an accurate chemical description of the actual fuel

    Large-eddy simulation of cycle-resolved knock in a turbocharged SI engine

    Get PDF
    The paper presents a numerical study of cycle-to-cycle variability in a turbocharged GDI engine. The Large-Eddy Simulation technique is adopted in this study in conjunction with the recent ISSIM-LES model for spark-ignition, allowing a dedicated treatment of both the flame kernel formation and flame development phases. Numerical results are compared with an extended dataset of experimental test-bed acquisitions, where the engine is operated at knock-limited spark advance. The agreement of both ensemble averaged combustion pressure history and of its standard deviation confirm the validity of the adopted numerical framework able to correctly quantify the degree of CCV measured by the experiments. Knock tendency is evaluated by means of an in-house developed knock model, based on a tabulation technique for AI delays of the same RON98 gasoline as the one used in experiments. The results confirm the knock-free condition of the experimental KLSA, for which the cycle-resolved knock signature is extremely weak just for the cycles in the highest band of the CCV-affected combustion. The visualization of the pressure wave allows to identify the exhaust side as the most knock-prone region. Finally, spark-advance is increased by 3 CA with respect to the experimental edge-of knock limit, in order to simulate an experimentally prevented operating condition. Local pressure measurements mimicking flush-mounted transducers confirm the severe knock damage related to this condition. The predictive capability of the combustion CCV and of the adopted knock model confirm the heavy and recurrent cycle-resolved knock damage

    Analysis and Simulation of Non-Flamelet Turbulent Combustion in a Research Optical Engine

    Get PDF
    In recent years, the research community devoted many resources to define accurate methodologies to model the real physics behind turbulent combustion. Such effort aims at reducing the need for case-by-case calibration in internal combustion engine simulations. In the present work two of the most widespread combustion models in the engine modelling community are compared, namely ECFM-3Z and G-equation. The interaction of turbulent flows with combustion chemistry is investigated and understood. In particular, the heat release rate characterizing combustion, and therefore the identification of a flame front, is analysed based on flame surface density concept rather than algebraic correlations for turbulent burn rate. In the first part, spark-ignition (S.I.) combustion is simulated in an optically accessible GDI single-cylinder research engine in firing conditions. The turbulent combustion regime is mapped on the Borghi-Peters diagram for all the conditions experienced by the engine flame, and the consistency of the two combustion models is critically analysed. In the second part, a simple test case is defined to test the two combustion models in an ideally turbulence-controlled environment: this allows to fully understand the main differences between the two combustion models under well-monitored conditions. and results are compared against experimental databases of turbulent burn rate for wide ranges of Damkohler (Da) and Karlovitz (Ka) numbers. The joint experimental and numerical study presented in this paper evaluates different approaches within the unified flamelet/non-flamelet framework for modelling turbulent combustion in SI engines. It also indicates guidelines for reduced calibration effort in widespread combustion models

    CFD Analysis of the Acoustic Behavior of a Centrifugal Compressor for High Performance Engine Application

    Get PDF
    Abstract The paper reports an activity aiming at the characterization of the acoustic noise of a centrifugal compressor for a currently made high performance engine. All the analyses are carried out through the use of Detached Eddy Simulation. During high-load/low- engine speed operations of the engine, the compressor exhibits noise peaks above 150 dBA at relatively low frequencies, whose origin is relatively hard to rationalize. The use of three-dimensional CFD simulation appears to be very promising to gain a better understanding of the complex flow structures at the compressor inlet as well as to promote design optimizations aiming at limiting the acoustic emissivity of the component. In view of the dependency of the acoustic phenomena on the instantaneous pressure waves and flow structures, fully transient CFD simulations are highly recommended, together with the use of sophisticated numerical techniques such as Large Eddy and Detached Eddy simulation [1] , [2] , which are widely recognized to be able to better capture highly unstable features than the common RANS approach [3] , [4] . In order to limit the computational cost of the analyses, preliminary steady-state RANS simulations are carried out to both initialize the flow field and to evaluate the grid capability to properly match the desired frequency spectrum

    A new design concept for 2-Stroke aircraft Diesel engines

    Get PDF
    High power density, low weight, compact dimensions, high efficiency as well as reliability are the key factors in designing and dimensioning piston engines for General Aviation and Unmanned Aerial Vehicle (UAV) power plants. Despite of new available technologies, conventional solutions are still struggling to fulfill simultaneously all those requirements. The paper explores the application of a new design of 2-Stroke externally scavenged engines to aircraft. The new concept basically consists in the use of a patented rotary valve for controlling the flow through a set of inlet ports, enabling supercharging and the achievement of extremely high power densities compared to conventional solutions. The scavenging is realized by using an external pump, made up of a further cylinder, whose piston is connected to the same crankshaft. The piston pump allows the crankcase to be used as a conventional oil sump, and greatly improves the crankshaft balance. No poppet valves or camshafts need to be installed, since the flow is driven by piston-controlled ports and by two sets of reed valves. The engine can adopt two types of combustion system: Gasoline Direct Injection (GDI) for SI operations, and Direct Injection Common Rail for Diesel cycle. The paper is focused on the last version, since it can run on standard aircraft fuel. The Diesel engine has three cylinders and three piston pumps, for a total displacement of 1.5 liter The engine is turbocharged and inter-cooled, in order to reach a power target, at sea level, of 150 kW@4000 rpm. Another fundamental target is the minimum power of 100 kW, at the altitude of 20,000 feet. The paper reviews the design of the engine and presents the numerical prediction of the key performance parameters

    a numerical investigation on the potentials of water injection to increase knock resistance and reduce fuel consumption in highly downsized gdi engines

    Get PDF
    Abstract 3D CFD analyses are used to analyse the effects of port-injection of water in a high performance turbocharged GDI engine. Particularly, water injection is adopted to replace mixture enrichment while preserving, if not improving, indicated mean effective pressure and knock resistance. A full-load / maximum power engine operation of a currently made turbocharged GDI engine is investigated comparing the actual adopted fuel-only rich mixture to stoichiometric-to-lean mixtures, for which water is added in the intake port under constant charge cooling in the combustion chamber. In order to find the optimum fuel/water balance, preliminary analyses are carried out using a chemical reactor to evaluate the effects of charge dilution and mixture modification on both autoignition delays and laminar flame speeds. Thanks to the lower chemical reactivity of the diluted end gases, the water-injected engine allows the spark advance (SA) to be increased; as a consequence, engine power target is met, or even crossed, with a simultaneous relevant reduction of fuel consumption

    Combustion System Development of an Opposed Piston 2-Stroke Diesel Engine

    Get PDF
    Today, the interest towards 2-stroke, opposed-piston compression-ignition engines is higher than ever, after the announcement of imminent production of a 2.7L 3-cylinder light truck engine by Achates Powers. In comparison to other 2-stroke designs, the advantages in terms of scavenge and thermal efficiency are indisputable: a perfect "uniflow" scavenge mode can be achieved with inexpensive and efficient piston controlled ports, while heat losses are strongly reduced by the relatively small transfer area. Unfortunately, the design of the combustion system is completely different from a 4-stroke DI Diesel engine, since the injectors must be installed on the cylinder liners: however, this challenge can be converted into a further opportunity to improve fuel efficiency, adopting advanced combustion concepts. This paper is based on a previous study, where the main geometric parameters of an opposed piston engine rated at 270 kW (3200 rpm) were defined with the support of CFD 1D-3D simulations. The current work will focus on the influence of an innovative combustion system, developed by the authors by means of further CFD-3D analyses, holding constant the boundary conditions of the scavenging process. The numerical study eventually demonstrates that an optimized 2-S OP Diesel engine can achieve a 10% improvement on brake efficiency at full load, in comparison to an equivalent conventional 4-stroke engine, while reducing in-cylinder peak pressures and turbine inlet temperatures

    Effects of fuel composition on charge preparation, combustion and knock tendency in a high performance GDI engine. Part II: Les analysis

    Get PDF
    As discussed in the Part I of this paper, a numerical activity is carried out in order to analyse the effects of fuel composition modelling in a turbocharged GDI engine for sport car applications. While Part I analyses the "ensemble averaged" macroscopic effects on spray evolution, mixture stratification, combustion and knock tendency, in Part II of this paper cycle-to-cycle variations are analysed and discussed using a multi-cycle LES numerical framework, again comparing results from a more traditional single-component fuel surrogate model to those of a multi-component one. A purposely developed numerical approach is applied to properly account for the effects of the Discrete-Continuous-Multi-Component fuel formulation on the charge preparation: just before the spark timing, each vaporized fuel fraction is lumped back into a single-component surrogate fuel to allow the combustion model (ECFM-3Z, in its LES formulation) to take place. At the beginning of a new injection process, the numerical framework for the injected spray is switched back to Multi-Component, thus allowing each fuel fraction to independently spread, vaporize and diffuse in the combustion chamber according to the cycle-specific characteristics. A detailed comparison between the two fuel formulations is carried out on both average and rms values of the most influencing fields just before the spark discharge
    • …
    corecore