2,809 research outputs found

    Modular termination verification for non-blocking concurrency

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2016.We present Total-TaDA, a program logic for verifying the total correctness of concurrent programs: that such programs both terminate and produce the correct result. With Total-TaDA, we can specify constraints on a thread’s concurrent environment that are necessary to guarantee termination. This allows us to verify total correctness for nonblocking algorithms, e.g. a counter and a stack. Our specifications can express lock- and wait-freedom. More generally, they can express that one operation cannot impede the progress of another, a new non-blocking property we call non-impedance. Moreover, our approach is modular. We can verify the operations of a module independently, and build up modules on top of each other

    Structural, mechanical and thermodynamic properties of a coarse-grained DNA model

    Full text link
    We explore in detail the structural, mechanical and thermodynamic properties of a coarse-grained model of DNA similar to that introduced in Thomas E. Ouldridge, Ard A. Louis, Jonathan P.K. Doye, Phys. Rev. Lett. 104 178101 (2010). Effective interactions are used to represent chain connectivity, excluded volume, base stacking and hydrogen bonding, naturally reproducing a range of DNA behaviour. We quantify the relation to experiment of the thermodynamics of single-stranded stacking, duplex hybridization and hairpin formation, as well as structural properties such as the persistence length of single strands and duplexes, and the torsional and stretching stiffness of double helices. We also explore the model's representation of more complex motifs involving dangling ends, bulged bases and internal loops, and the effect of stacking and fraying on the thermodynamics of the duplex formation transition.Comment: 25 pages, 16 figure

    Counting Points on Genus 2 Curves with Real Multiplication

    Get PDF
    We present an accelerated Schoof-type point-counting algorithm for curves of genus 2 equipped with an efficiently computable real multiplication endomorphism. Our new algorithm reduces the complexity of genus 2 point counting over a finite field (\F_{q}) of large characteristic from (\widetilde{O}(\log^8 q)) to (\widetilde{O}(\log^5 q)). Using our algorithm we compute a 256-bit prime-order Jacobian, suitable for cryptographic applications, and also the order of a 1024-bit Jacobian

    Testing Hardy nonlocality proof with genuine energy-time entanglement

    Full text link
    We show two experimental realizations of Hardy ladder test of quantum nonlocality using energy-time correlated photons, following the scheme proposed by A. Cabello \emph{et al.} [Phys. Rev. Lett. \textbf{102}, 040401 (2009)]. Unlike, previous energy-time Bell experiments, these tests require precise tailored nonmaximally entangled states. One of them is equivalent to the two-setting two-outcome Bell test requiring a minimum detection efficiency. The reported experiments are still affected by the locality and detection loopholes, but are free of the post-selection loophole of previous energy-time and time-bin Bell tests.Comment: 5 pages, revtex4, 6 figure

    A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths

    Full text link
    We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector arrays for millimeter-wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously-characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured response and noise properties of LEKID arrays with and without the TiN mesh. For this test, the LEKIDs were illuminated with an adjustable, incoherent electronic millimeter-wave source. Our measurements show that the optical crosstalk in the LEKID array with the TiN absorber is reduced by 66\% on average, so the approach is effective and a viable candidate for future kilo-pixel arrays.Comment: 7 pages, 5 figures, accepted for publication in the Journal of Low Temperature Physic

    Microscopic formulation of the Zimm-Bragg model for the helix-coil transition

    Get PDF
    A microscopic spin model is proposed for the phenomenological Zimm-Bragg model for the helix-coil transition in biopolymers. This model is shown to provide the same thermophysical properties of the original Zimm-Bragg model and it allows a very convenient framework to compute statistical quantities. Physical origins of this spin model are made transparent by an exact mapping into a one-dimensional Ising model with an external field. However, the dependence on temperature of the reduced external field turns out to differ from the standard one-dimensional Ising model and hence it gives rise to different thermophysical properties, despite the exact mapping connecting them. We discuss how this point has been frequently overlooked in the recent literature.Comment: 11 pages, 2 figure

    Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths

    Get PDF
    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background (CMB) studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated twenty-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the noise-equivalent temperatures (NET) for a 4 K optical load are in the range 26\thinspace\pm6 \thinspace \mu \mbox{K} \sqrt{\mbox{s}}
    • …
    corecore