551 research outputs found

    Polyakov conjecture and 2+1 dimensional gravity coupled to particles

    Get PDF
    A proof is given of Polyakov conjecture about the auxiliary parameters of the SU(1,1) Riemann-Hilbert problem for general elliptic singularities. Such a result is related to the uniformization of the the sphere punctured by n conical defects. Its relevance to the hamiltonian structure of 2+1 dimensional gravity in the maximally slicing gauge is stressed.Comment: Talk by P. Menotti at Int. Europhysics Conference on High Energy Physics, Budapest 12-18 July 2001, 5 pages late

    Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering

    Get PDF
    Here we report on the development of a new type of hybrid fibrinogen–polylactic acid (FBG–PLA) nanofibres (NFs) with improved stiffness, combining the good mechanical properties of PLA with the excellent cell recognition properties of native FBG. We were particularly interested in the dorsal and ventral cell response to the nanofibres' organization (random or aligned), using human umbilical endothelial cells (HUVECs) as a model system. Upon ventral contact with random NFs, the cells developed a stellate-like morphology with multiple projections. The well-developed focal adhesion complexes suggested a successful cellular interaction. However, time-lapse analysis shows significantly lowered cell movements, resulting in the cells traversing a relatively short distance in multiple directions. Conversely, an elongated cell shape and significantly increased cell mobility were observed in aligned NFs. To follow the dorsal cell response, artificial wounds were created on confluent cell layers previously grown on glass slides and covered with either random or aligned NFs. Time-lapse analysis showed significantly faster wound coverage (within 12 h) of HUVECs on aligned samples vs. almost absent directional migration on random ones. However, nitric oxide (NO) release shows that endothelial cells possess lowered functionality on aligned NFs compared to random ones, where significantly higher NO production was found. Collectively, our studies show that randomly organized NFs could support the endothelization of implants while aligned NFs would rather direct cell locomotion for guided neovascularization

    Proof of Polyakov conjecture for general elliptic singularities

    Get PDF
    A proof is given of Polyakov conjecture about the auxiliary parameters of the SU(1,1) Riemann-Hilbert problem for general elliptic singularities. Its relevance to 2+1 dimensional gravity and to the uniformization of the sphere punctured by n conical defects is stressed

    Evaluation of the masonry and timber structures of San Francisco Church in Santiago de Cuba through nondestructive diagnostic methods

    Get PDF
    Recently, due to a renewed interest in the religious architectural heritage of the Caribbean island of Cuba, some important interventions for the restoration and reinforcement of the colonial churches of the island were carried out. The authors, collaborating with the Archdiocese of Santiago de Cuba in a project concerning the protection of Cuban churches, applied some nondestructive and noninvasive destructive tests for an in-depth study of the main characteristics of those structures. The diagnostic method, developed mainly for the historical buildings or monuments of Europe and North America, was used to study some peculiarities of the building construction traditions of this area. The proposed techniques revealed the existence of several original solutions, for example, defenses for seismic mitigation, developed to resist the earthquakes that frequently affect the area

    SARS-CoV-2 Mproinhibition by a zinc ion: structural features and hints for drug design

    Get PDF
    The first structure of the SARS-CoV-2 main protease in complex with an isolated zinc ion provides solid ground for the design of potent and selective metal-conjugated inhibitors

    Development of a One-Dimensional Model for the Prediction of Leakage Flows in Regenerative Pumps

    Get PDF
    Regenerative pumps are characterized by a low specific speed that place them between rotary positive displacement pumps and purely radial centrifugal pumps. They are interesting for many industrial applications since, for a given flow rate and a specified head, they allow for a reduced size and can operate at a lower rotational speed with respect to purely radial pumps. The complexity of the flow within regenerative machines makes the theoretical performance estimation a challenging task. The prediction of the leakage flow rate between the rotating and the static disks is the one that more than others has an impact on the prediction of global performance. All the classical approaches to the disk clearance problem assume that there is no relevant circumferential pressure gradient. In the present case, the flow develops along the tangential direction and the pressure gradient is intrinsically non-zero. The aim of the present work is to develop a reliable approach for the prediction of leakage flows in regenerative pumps. The method assumes that the flow inside of the disk clearance can be decomposed into several stream-tubes. Energy balance is performed for each tube, thus generating a system that can be solved numerically. The new methodology has been tuned using data obtained from the numerical simulation of virtual prototypes of regenerative pumps where the disk clearance is part of the control volume. After that, the methodology has been integrated into an existing one-dimensional code called DART (developed at the University of Florence in cooperation with Pierburg Pump Technology Italy S.p.A.) and the new algorithm is verified using available experimental and numerical data. It is here demonstrated that an appropriate calibration of the leakage flow model allows for an improved reliability of the one-dimensional code
    • …
    corecore