4 research outputs found

    Results and clinical interpretation of germline RET analysis in a series of patients with medullary thyroid carcinoma: The challenge of the variants of uncertain significance

    Get PDF
    Germline RET variants are responsible for approximately 25% of medullary thyroid carcinoma (MTC) cases. Identification of RET variant carriers allows for the adoption of preventative measures which are dependent on the risk associated with the specific alteration. From 2002 to 2020, at our cancer genetics clinic, RET genetic testing was performed in 163 subjects (102 complete gene analyses and 61 targeted analyses), 72 of whom presented with MTC. A germline RET variant was identified in 31.9% of patients affected by MTC (93.8% of those having positive family history and 14.3% of clinically sporadic cases). Subsequent target testing in relatives allowed us to identify 22 asymptomatic carriers, who could undertake appropriate screening. Overall, patients with germline RET variants differed significantly from those who tested negative by family history (p < 0.001) and mean age at MTC diagnosis (44.45 vs. 56.42 years; p = 0.010), but the difference was not significant when only carriers of moderate risk variants were considered (51.78 vs. 56.42 years; p = 0.281). Out of 12 different variants detected in 49 patients, five (41.7%) were of uncertain significance (VUS). For two of these, p.Ser904Phe and p.Asp631_Leu633delinsGlu, co-segregation and genotype/phenotype analysis, matched with data from the literature, provided evidence supporting their classification in the moderate and the highest/high risk class (with a MEN2B phenotype), respectively

    The First-in-Human Study of the Hydrogen Sulfate (Hyd-Sulfate) Capsule of the MEK1/2 Inhibitor AZD6244 (ARRY-142886): A Phase I Open-Label Multicenter Trial in Patients with Advanced Cancer

    Get PDF
    Contains fulltext : 87826timmer-bonte.pdf (publisher's version ) (Closed access)PURPOSE: In part A, the aim was to define the maximum tolerated dose (MTD) of the hydrogen sulfate (Hyd-Sulfate) oral capsule formulation of the mitogen-activated protein kinase kinase inhibitor AZD6244 (ARRY-142886). In part B, the aim was to compare the pharmacokinetic profile of the new Hyd-Sulfate capsule with the initial AZD6244 free-base suspension and further characterize the pharmacodynamic profile and efficacy of the new formulation. EXPERIMENTAL DESIGN: In part A, 30 patients received escalating doses of AZD6244 Hyd-Sulfate twice daily. In part B, 29 patients were randomized to a single dose of the Hyd-Sulfate capsule or free-base suspension, followed by a washout, then a single dose of the alternative formulation. Patients received the Hyd-Sulfate capsule twice daily at MTD of part A thereafter. RESULTS: The MTD of the Hyd-Sulfate capsule was 75 mg twice daily. Dose limiting toxicities were Common Terminology Criteria for Adverse Events grade 3 acneiform rash and pleural effusion. Fatigue (65.7%) and acneiform dermatitis (60.0%) were the most frequent adverse events at the MTD. Based on area under curve(0-24), exposure of the 75 mg Hyd-Sulfate capsule relative to the 100 mg free-base suspension was 197% (90% confidence interval, 161-242%). Pharmacodynamic analysis showed that inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced extracellular signal-regulated kinase phosphorylation in peripheral blood lymphocytes was related to plasma concentrations of AZD6244, with an estimated IC(50) of 352 ng/mL and maximum inhibition (E(max)) of approximately 91%, showing target inhibition. A patient with metastatic melanoma bearing a V600E BRAF mutation achieved a complete response persisting after 15 months of therapy. CONCLUSIONS: The AZD6244 Hyd-Sulfate capsule formulation has shown a favorable toxicity, pharmacokinetic, and pharmacodynamic profile, and is being taken forward in ongoing clinical trials

    ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population

    No full text
    In December 2019, an initial cluster of interstitial bilateral pneumonia emerged in Wuhan, China. A human-to-human transmission was assumed and a previously unrecognized entity, termed coronavirus disease-19 (COVID-19) due to a novel coronavirus (SARS-CoV-2) was described. The infection has rapidly spread out all over the world and Italy has been the first European country experiencing the endemic wave with unexpected clinical severity in comparison with Asian countries. It has been shown that SARS-CoV-2 utilizes angiotensin converting enzyme 2 (ACE2) as host receptor and host proteases for cell surface binding and internalization. Thus, a predisposing genetic background can give reason for interindividual disease susceptibility and/or severity. Taking advantage of the Network of Italian Genomes (NIG), here we mined whole-exome sequencing data of 6930 Italian control individuals from five different centers looking for ACE2 variants. A number of variants with a potential impact on protein stability were identified. Among these, three more common missense changes, p.(Asn720Asp), p.(Lys26Arg), and p.(Gly211Arg) were predicted to interfere with protein structure and stabilization. Rare variants likely interfering with the internalization process, namely p.(Leu351Val) and p.(Pro389His), predicted to interfere with SARS-CoV-2 spike protein binding, were also observed. Comparison of ACE2 WES data between a cohort of 131 patients and 258 controls allowed identifying a statistically significant (P value < 0.029) higher allelic variability in controls compared with patients. These findings suggest that a predisposing genetic background may contribute to the observed interindividual clinical variability associated with COVID-19, allowing an evidence-based risk assessment leading to personalized preventive measures and therapeutic options
    corecore