27 research outputs found

    Negative Effects of Copper Oxide Nanoparticles on Carbon and Nitrogen Cycle Microbial Activities in Contrasting Agricultural Soils and in Presence of Plants

    Get PDF
    Metal-oxide nanoparticles (NPs) such as copper oxide (CuO) NPs offer promising perspectives for the development of novel agro-chemical formulations of pesticides and fertilizers. However, their potential impact on agro-ecosystem functioning still remains to be investigated. Here, we assessed the impact of CuO-NPs (0.1, 1, and 100 mg/kg dry soil) on soil microbial activities involved in the carbon and nitrogen cycles in five contrasting agricultural soils in a microcosm experiment over 90 days. Additionally, in a pot experiment, we evaluated the influence of plant presence on the toxicity of CuO-NPs on soil microbial activities. CuO-NPs caused significant reductions of the three microbial activities measured (denitrification, nitrification, and soil respiration) at 100 mg/kg dry soil, but the low concentrations (0.1 and 1 mg/kg) had limited effects. We observed that denitrification was the most sensitive microbial activity to CuO-NPs in most soil types, while soil respiration and nitrification were mainly impacted in coarse soils with low organic matter content. Additionally, large decreases in heterotrophic microbial activities were observed in soils planted with wheat, even at 1 mg/kg for soil substrate-induced respiration, indicating that plant presence did not mitigate or compensate CuO-NP toxicity for microorganisms. These two experiments show that CuO-NPs can have detrimental effects on microbial activities in soils with contrasting physicochemical properties and previously exposed to various agricultural practices. Moreover, we observed that the negative effects of CuO-NPs increased over time, indicating that short-term studies (hours, days) may underestimate the risks posed by these contaminants in soils

    Impacts du changement climatique sur les bilans de carbone et de gaz à effet de serre de la prairie permanente en lien avec la diversité fonctionnelle

    No full text
    In France, the grassland ecosystem represents an important part of the total of agricultural landscape and provides important economic and ecological services. This multifunctional ecosystem is a complex biological system where atmosphere, plants and soil interact together,via the biogeochemical cycles (particularly carbon and nitrogen cycles). In order to maintain goods and services from grasslands in changing environmental conditions, current research on the grassland ecosystem focus on the evolution of key grassland processes (i.e. production,gaseous exchanges, biodiversity) under multiple and simultaneous climate change.This thesis addresses the impacts of the three main climate change drivers (air temperature, precipitation and atmospheric carbon dioxide concentrations) on an extensively-managed upland grassland in situ. We investigated changes in ecosystem function and structure under the influence of a projected climate scenario for 2080 for central France. This scenario (ACCACIA A2) comprises : air warming of 3.5°C, 20 % reduction of the summer precipitation and an increase of 200 ppm in atmospheric carbon dioxide (CO2).Our results indicate that in the medium term (after three years of experimental treatments), warming had negative effects on the annual aboveground production. Elevated CO2 had no significant effects on aboveground production initially, but positive effects on biomass from the third year onwards. Species richness and the indices of species diversity did not show significant differences in response to climate change, but warming was associated with a decline in grass abundance after three years. Contrary to biomass production, plant traits showed a stronger response to elevated CO2 than to warming. After three years of study, canopy-level photosynthesis showed a negative effect of warming but an acclimation to elevated CO2 during the growing season. This pattern was also found for leaf-level photosynthetic rates measured on a dominant grass species (Festuca arundinacea). For Festuca, the direct negative effect of warming was associated with a decrease in leaf fructan metabolism. In contrast, the photosynthetic acclimation under elevated CO2 observed in Festuca seemed closely linked to the indirect effect of soil water content. Our study also examined effects of climate change on one of the main trace greenhouse gases in grasslands, nitrous oxide (N2O). During our study, N2O fluxes showed significant inter-and intra-annual variability. Nevertheless, mean annual N2O fluxes increased in response to warming. Warming had a positive effect on nitrification rates, denitrification rates and the population size of nitrifying bacteria (AOB). Furthermore, field N2O fluxes showed a stronger correlation with the microbial population size in the warmed compared with the control treatment. Overall, warming seems to be the main factor driving ecosystem responses to projected climate change conditions for this cool, upland grassland. In addition, our results suggest that grassland function (aboveground production, N2O emissions) are more vulnerable to complex climate change than grassland community structure for our study system.En Europe, la prairie occupe prĂšs de 40% de la surface agricole utile et fournit un ensemble de services environnementaux et agricoles, tout en constituant un rĂ©servoir de diversitĂ© vĂ©gĂ©tale et animale. Cet Ă©cosystĂšme herbacĂ©, plurispĂ©cifique et multifonctionnel est un systĂšme biologique complexe qui fait interagir l’atmosphĂšre, la vĂ©gĂ©tation et le sol, via les cycles biogĂ©ochimiques, notamment ceux du carbone et de l’azote. MotivĂ©es par le maintien des biens et services des prairies face aux changements climatiques et atmosphĂ©riques, les recherches actuelles sur l’écosystĂšme prairial s’attachent Ă  Ă©tudier l’évolution des processus clĂ©s du systĂšme prairial (i .e. production, Ă©changes gazeux, changements d’espĂšce) sous changement climatique complexe. Ce projet de thĂšse a pour objectif d’étudier in situ les impacts des principales composantes du changement climatique (tempĂ©rature de l’air, prĂ©cipitations, concentration atmosphĂ©rique en gaz carbonique) sur des prairies extensives de moyenne montagne. Nous cherchons Ă  mettre en Ă©vidence les changements de structure et de fonctionnement de l’écosystĂšme prairial sous l’influence d’un scĂ©nario de changement climatique prĂ©vu Ă  l’horizon 2080 pour le centre de la France. Ce scĂ©nario (ACCACIA A2) prĂ©voit une augmentation de 3.5°C des tempĂ©ratures de l’air, une augmentation des concentrations atmosphĂ©riques en CO2 de 200 ppm et une rĂ©duction des prĂ©cipitations estivales de 20 %. Nos rĂ©sultats indiquent qu’à moyen terme (trois ans de traitements expĂ©rimentaux) le rĂ©chauffement a des effets nĂ©fastes sur la production annuelle du couvert vĂ©gĂ©tal. L’effet bĂ©nĂ©fique d’une Ă©lĂ©vation des teneurs en CO2 sur la production aĂ©rienne n’apparaĂźt qu’à partir de la troisiĂšme annĂ©e. La richesse spĂ©cifique (nombre d’espĂšces) et les indices de diversitĂ© taxonomique n’ont pas montrĂ© de variations significatives sous changement climatique. Cependant aprĂšs trois annĂ©es de rĂ©chauffement, l’abondance des graminĂ©es semble ĂȘtre altĂ©rĂ©e. Contrairement Ă  la production, les traits sont plus affectĂ©s par la concentration en CO2 Ă©levĂ©e que par le rĂ©chauffement. AprĂšs trois ans de traitements, des mesures d’échanges gazeux (CO2) Ă  l’échelle du couvert vĂ©gĂ©tal pendant la saison de croissance ont montrĂ© un effet nĂ©gatif du rĂ©chauffement sur l’activitĂ© photosynthĂ©tique du couvert et une acclimatation de la photosynthĂšse au cours de la saison de croissance sous CO2 Ă©levĂ©. Ces tendances ont aussi Ă©tĂ© trouvĂ©es sur la photosynthĂšse foliaire d’une des espĂšces dominantes du couvert (Festuca arundinacea). L’effet nĂ©gatif direct du rĂ©chauffement Ă  l’échelle foliaire semble ĂȘtre associĂ© Ă  une diminution des sucres dans les limbes. L’acclimatation Ă  l’enrichissement enCO2 Ă  l’échelle foliaire, quant Ă  elle, semble ĂȘtre indirectement dĂ©pendante du statu hydrique du sol. Notre Ă©tude a aussi portĂ© sur l’analyse des Ă©changes gazeux sol-atmosphĂšre d’un des principaux gaz Ă  effet de serre trace des prairies, l’oxyde nitreux (N2O). MalgrĂ© une forte variabilitĂ© inter- et intra- annuelle, les flux de N2O semblent ĂȘtre favorisĂ©s sous rĂ©chauffement. L’augmentation de la tempĂ©rature affecte aussi positivement les taux de nitrification et leur pool microbien associĂ© (AOB), et les rejets de N2O via dĂ©nitrification. De plus, les flux de N2O mesurĂ©s aux champs ont montrĂ© une corrĂ©lation plus forte Ă  la taille des populations microbiennes (nitrifiantes et dĂ©nitrifiantes) en traitement rĂ©chauffĂ© qu’en traitement tĂ©moin. En conclusion, la tempĂ©rature semble ĂȘtre le facteur principal dans les rĂ©ponses de cette prairie aux changements climatiques futurs. De plus, nos rĂ©sultats suggĂšrent que le fonctionnement (production, Ă©missions de N2O) des prairies extensives de moyenne montagne est plus vulnĂ©rable aux changements climatiques que la structure de la communautĂ© vĂ©gĂ©tale

    Impacts of climate change drivers on grassland structure, production and greenhouse gas fluxes

    No full text
    En Europe, la prairie occupe prĂšs de 40% de la surface agricole utile et fournit un ensemble de services environnementaux et agricoles, tout en constituant un rĂ©servoir de diversitĂ© vĂ©gĂ©tale et animale. Cet Ă©cosystĂšme herbacĂ©, plurispĂ©cifique et multifonctionnel est un systĂšme biologique complexe qui fait interagir l’atmosphĂšre, la vĂ©gĂ©tation et le sol, via les cycles biogĂ©ochimiques, notamment ceux du carbone et de l’azote. MotivĂ©es par le maintien des biens et services des prairies face aux changements climatiques et atmosphĂ©riques, les recherches actuelles sur l’écosystĂšme prairial s’attachent Ă  Ă©tudier l’évolution des processus clĂ©s du systĂšme prairial (i .e. production, Ă©changes gazeux, changements d’espĂšce) sous changement climatique complexe. Ce projet de thĂšse a pour objectif d’étudier in situ les impacts des principales composantes du changement climatique (tempĂ©rature de l’air, prĂ©cipitations, concentration atmosphĂ©rique en gaz carbonique) sur des prairies extensives de moyenne montagne. Nous cherchons Ă  mettre en Ă©vidence les changements de structure et de fonctionnement de l’écosystĂšme prairial sous l’influence d’un scĂ©nario de changement climatique prĂ©vu Ă  l’horizon 2080 pour le centre de la France. Ce scĂ©nario (ACCACIA A2) prĂ©voit une augmentation de 3.5°C des tempĂ©ratures de l’air, une augmentation des concentrations atmosphĂ©riques en CO2 de 200 ppm et une rĂ©duction des prĂ©cipitations estivales de 20 %. Nos rĂ©sultats indiquent qu’à moyen terme (trois ans de traitements expĂ©rimentaux) le rĂ©chauffement a des effets nĂ©fastes sur la production annuelle du couvert vĂ©gĂ©tal. L’effet bĂ©nĂ©fique d’une Ă©lĂ©vation des teneurs en CO2 sur la production aĂ©rienne n’apparaĂźt qu’à partir de la troisiĂšme annĂ©e. La richesse spĂ©cifique (nombre d’espĂšces) et les indices de diversitĂ© taxonomique n’ont pas montrĂ© de variations significatives sous changement climatique. Cependant aprĂšs trois annĂ©es de rĂ©chauffement, l’abondance des graminĂ©es semble ĂȘtre altĂ©rĂ©e. Contrairement Ă  la production, les traits sont plus affectĂ©s par la concentration en CO2 Ă©levĂ©e que par le rĂ©chauffement. AprĂšs trois ans de traitements, des mesures d’échanges gazeux (CO2) Ă  l’échelle du couvert vĂ©gĂ©tal pendant la saison de croissance ont montrĂ© un effet nĂ©gatif du rĂ©chauffement sur l’activitĂ© photosynthĂ©tique du couvert et une acclimatation de la photosynthĂšse au cours de la saison de croissance sous CO2 Ă©levĂ©. Ces tendances ont aussi Ă©tĂ© trouvĂ©es sur la photosynthĂšse foliaire d’une des espĂšces dominantes du couvert (Festuca arundinacea). L’effet nĂ©gatif direct du rĂ©chauffement Ă  l’échelle foliaire semble ĂȘtre associĂ© Ă  une diminution des sucres dans les limbes. L’acclimatation Ă  l’enrichissement enCO2 Ă  l’échelle foliaire, quant Ă  elle, semble ĂȘtre indirectement dĂ©pendante du statu hydrique du sol. Notre Ă©tude a aussi portĂ© sur l’analyse des Ă©changes gazeux sol-atmosphĂšre d’un des principaux gaz Ă  effet de serre trace des prairies, l’oxyde nitreux (N2O). MalgrĂ© une forte variabilitĂ© inter- et intra- annuelle, les flux de N2O semblent ĂȘtre favorisĂ©s sous rĂ©chauffement. L’augmentation de la tempĂ©rature affecte aussi positivement les taux de nitrification et leur pool microbien associĂ© (AOB), et les rejets de N2O via dĂ©nitrification. De plus, les flux de N2O mesurĂ©s aux champs ont montrĂ© une corrĂ©lation plus forte Ă  la taille des populations microbiennes (nitrifiantes et dĂ©nitrifiantes) en traitement rĂ©chauffĂ© qu’en traitement tĂ©moin. En conclusion, la tempĂ©rature semble ĂȘtre le facteur principal dans les rĂ©ponses de cette prairie aux changements climatiques futurs. De plus, nos rĂ©sultats suggĂšrent que le fonctionnement (production, Ă©missions de N2O) des prairies extensives de moyenne montagne est plus vulnĂ©rable aux changements climatiques que la structure de la communautĂ© vĂ©gĂ©tale.In France, the grassland ecosystem represents an important part of the total of agricultural landscape and provides important economic and ecological services. This multifunctional ecosystem is a complex biological system where atmosphere, plants and soil interact together,via the biogeochemical cycles (particularly carbon and nitrogen cycles). In order to maintain goods and services from grasslands in changing environmental conditions, current research on the grassland ecosystem focus on the evolution of key grassland processes (i.e. production,gaseous exchanges, biodiversity) under multiple and simultaneous climate change.This thesis addresses the impacts of the three main climate change drivers (air temperature, precipitation and atmospheric carbon dioxide concentrations) on an extensively-managed upland grassland in situ. We investigated changes in ecosystem function and structure under the influence of a projected climate scenario for 2080 for central France. This scenario (ACCACIA A2) comprises : air warming of 3.5°C, 20 % reduction of the summer precipitation and an increase of 200 ppm in atmospheric carbon dioxide (CO2).Our results indicate that in the medium term (after three years of experimental treatments), warming had negative effects on the annual aboveground production. Elevated CO2 had no significant effects on aboveground production initially, but positive effects on biomass from the third year onwards. Species richness and the indices of species diversity did not show significant differences in response to climate change, but warming was associated with a decline in grass abundance after three years. Contrary to biomass production, plant traits showed a stronger response to elevated CO2 than to warming. After three years of study, canopy-level photosynthesis showed a negative effect of warming but an acclimation to elevated CO2 during the growing season. This pattern was also found for leaf-level photosynthetic rates measured on a dominant grass species (Festuca arundinacea). For Festuca, the direct negative effect of warming was associated with a decrease in leaf fructan metabolism. In contrast, the photosynthetic acclimation under elevated CO2 observed in Festuca seemed closely linked to the indirect effect of soil water content. Our study also examined effects of climate change on one of the main trace greenhouse gases in grasslands, nitrous oxide (N2O). During our study, N2O fluxes showed significant inter-and intra-annual variability. Nevertheless, mean annual N2O fluxes increased in response to warming. Warming had a positive effect on nitrification rates, denitrification rates and the population size of nitrifying bacteria (AOB). Furthermore, field N2O fluxes showed a stronger correlation with the microbial population size in the warmed compared with the control treatment. Overall, warming seems to be the main factor driving ecosystem responses to projected climate change conditions for this cool, upland grassland. In addition, our results suggest that grassland function (aboveground production, N2O emissions) are more vulnerable to complex climate change than grassland community structure for our study system

    Amélie Cantarel

    No full text
    Cantarel Amélie. Amélie Cantarel. In: DiplÎmées, n°231, 2009. Les femmes officiers dans les armées françaises. p. 262

    Amélie Cantarel

    No full text
    Cantarel Amélie. Amélie Cantarel. In: DiplÎmées, n°234, 2010. Echos des recherches en cours. pp. 135-136

    Impacts du changement climatique sur les bilans de carbone et de gaz à effet de serre de la prairie permanente en lien avec la diversité fonctionnelle

    No full text
    En Europe, la prairie occupe prĂšs de 40% de la surface agricole utile et fournit un ensemble de services environnementaux et agricoles, tout en constituant un rĂ©servoir de diversitĂ© vĂ©gĂ©tale et animale. Cet Ă©cosystĂšme herbacĂ©, plurispĂ©cifique et multifonctionnel est un systĂšme biologique complexe qui fait interagir l atmosphĂšre, la vĂ©gĂ©tation et le sol, via les cycles biogĂ©ochimiques, notamment ceux du carbone et de l azote. MotivĂ©es par le maintien des biens et services des prairies face aux changements climatiques et atmosphĂ©riques, les recherches actuelles sur l Ă©cosystĂšme prairial s attachent Ă  Ă©tudier l Ă©volution des processus clĂ©s du systĂšme prairial (i .e. production, Ă©changes gazeux, changements d espĂšce) sous changement climatique complexe. Ce projet de thĂšse a pour objectif d Ă©tudier in situ les impacts des principales composantes du changement climatique (tempĂ©rature de l air, prĂ©cipitations, concentration atmosphĂ©rique en gaz carbonique) sur des prairies extensives de moyenne montagne. Nous cherchons Ă  mettre en Ă©vidence les changements de structure et de fonctionnement de l Ă©cosystĂšme prairial sous l influence d un scĂ©nario de changement climatique prĂ©vu Ă  l horizon 2080 pour le centre de la France. Ce scĂ©nario (ACCACIA A2) prĂ©voit une augmentation de 3.5C des tempĂ©ratures de l air, une augmentation des concentrations atmosphĂ©riques en CO2 de 200 ppm et une rĂ©duction des prĂ©cipitations estivales de 20 %. Nos rĂ©sultats indiquent qu Ă  moyen terme (trois ans de traitements expĂ©rimentaux) le rĂ©chauffement a des effets nĂ©fastes sur la production annuelle du couvert vĂ©gĂ©tal. L effet bĂ©nĂ©fique d une Ă©lĂ©vation des teneurs en CO2 sur la production aĂ©rienne n apparaĂźt qu Ă  partir de la troisiĂšme annĂ©e. La richesse spĂ©cifique (nombre d espĂšces) et les indices de diversitĂ© taxonomique n ont pas montrĂ© de variations significatives sous changement climatique. Cependant aprĂšs trois annĂ©es de rĂ©chauffement, l abondance des graminĂ©es semble ĂȘtre altĂ©rĂ©e. Contrairement Ă  la production, les traits sont plus affectĂ©s par la concentration en CO2 Ă©levĂ©e que par le rĂ©chauffement. AprĂšs trois ans de traitements, des mesures d Ă©changes gazeux (CO2) Ă  l Ă©chelle du couvert vĂ©gĂ©tal pendant la saison de croissance ont montrĂ© un effet nĂ©gatif du rĂ©chauffement sur l activitĂ© photosynthĂ©tique du couvert et une acclimatation de la photosynthĂšse au cours de la saison de croissance sous CO2 Ă©levĂ©. Ces tendances ont aussi Ă©tĂ© trouvĂ©es sur la photosynthĂšse foliaire d une des espĂšces dominantes du couvert (Festuca arundinacea). L effet nĂ©gatif direct du rĂ©chauffement Ă  l Ă©chelle foliaire semble ĂȘtre associĂ© Ă  une diminution des sucres dans les limbes. L acclimatation Ă  l enrichissement enCO2 Ă  l Ă©chelle foliaire, quant Ă  elle, semble ĂȘtre indirectement dĂ©pendante du statu hydrique du sol. Notre Ă©tude a aussi portĂ© sur l analyse des Ă©changes gazeux sol-atmosphĂšre d un des principaux gaz Ă  effet de serre trace des prairies, l oxyde nitreux (N2O). MalgrĂ© une forte variabilitĂ© inter- et intra- annuelle, les flux de N2O semblent ĂȘtre favorisĂ©s sous rĂ©chauffement. L augmentation de la tempĂ©rature affecte aussi positivement les taux de nitrification et leur pool microbien associĂ© (AOB), et les rejets de N2O via dĂ©nitrification. De plus, les flux de N2O mesurĂ©s aux champs ont montrĂ© une corrĂ©lation plus forte Ă  la taille des populations microbiennes (nitrifiantes et dĂ©nitrifiantes) en traitement rĂ©chauffĂ© qu en traitement tĂ©moin. En conclusion, la tempĂ©rature semble ĂȘtre le facteur principal dans les rĂ©ponses de cette prairie aux changements climatiques futurs. De plus, nos rĂ©sultats suggĂšrent que le fonctionnement (production, Ă©missions de N2O) des prairies extensives de moyenne montagne est plus vulnĂ©rable aux changements climatiques que la structure de la communautĂ© vĂ©gĂ©tale.In France, the grassland ecosystem represents an important part of the total of agricultural landscape and provides important economic and ecological services. This multifunctional ecosystem is a complex biological system where atmosphere, plants and soil interact together,via the biogeochemical cycles (particularly carbon and nitrogen cycles). In order to maintain goods and services from grasslands in changing environmental conditions, current research on the grassland ecosystem focus on the evolution of key grassland processes (i.e. production,gaseous exchanges, biodiversity) under multiple and simultaneous climate change.This thesis addresses the impacts of the three main climate change drivers (air temperature, precipitation and atmospheric carbon dioxide concentrations) on an extensively-managed upland grassland in situ. We investigated changes in ecosystem function and structure under the influence of a projected climate scenario for 2080 for central France. This scenario (ACCACIA A2) comprises : air warming of 3.5C, 20 % reduction of the summer precipitation and an increase of 200 ppm in atmospheric carbon dioxide (CO2).Our results indicate that in the medium term (after three years of experimental treatments), warming had negative effects on the annual aboveground production. Elevated CO2 had no significant effects on aboveground production initially, but positive effects on biomass from the third year onwards. Species richness and the indices of species diversity did not show significant differences in response to climate change, but warming was associated with a decline in grass abundance after three years. Contrary to biomass production, plant traits showed a stronger response to elevated CO2 than to warming. After three years of study, canopy-level photosynthesis showed a negative effect of warming but an acclimation to elevated CO2 during the growing season. This pattern was also found for leaf-level photosynthetic rates measured on a dominant grass species (Festuca arundinacea). For Festuca, the direct negative effect of warming was associated with a decrease in leaf fructan metabolism. In contrast, the photosynthetic acclimation under elevated CO2 observed in Festuca seemed closely linked to the indirect effect of soil water content. Our study also examined effects of climate change on one of the main trace greenhouse gases in grasslands, nitrous oxide (N2O). During our study, N2O fluxes showed significant inter-and intra-annual variability. Nevertheless, mean annual N2O fluxes increased in response to warming. Warming had a positive effect on nitrification rates, denitrification rates and the population size of nitrifying bacteria (AOB). Furthermore, field N2O fluxes showed a stronger correlation with the microbial population size in the warmed compared with the control treatment. Overall, warming seems to be the main factor driving ecosystem responses to projected climate change conditions for this cool, upland grassland. In addition, our results suggest that grassland function (aboveground production, N2O emissions) are more vulnerable to complex climate change than grassland community structure for our study system.CLERMONT FD-Bib.Ă©lectronique (631139902) / SudocSudocFranceF

    Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem

    No full text
    International audienceQuestions How does above-ground grassland biomass production respond to change in multiple climate drivers over a 4-yr period? Can climate-induced patterns of biomass response be explained by shifts in plant community structure? Does sustained climate change affect the relationships between abundance of functional groups, community-scale leaf traits and above-ground production? Location Perennial grassland in the French Massif Central. Methods Monoliths extracted from the study grassland were exposed to a simulated climate change corresponding to the air temperature, atmospheric CO 2 and summer rainfall conditions projected for 2080. We examined impacts of climate treatments on above-ground biomass and community structure for 4 yr, and investigated the relationship between biomass production, species diversity and three key functional traits: specific leaf area, leaf dry matter content and leaf N content. Results Both warming and simultaneous application of warming, summer drought and elevated CO 2 were associated with an increase in annual above-ground biomass at the start of the study, but biomass responses became progressively negative over the course of the experiment. Decreases in vegetation N exports were also observed over time, possibly due to reduced soil N availability under climate change. Taxonomic diversity showed no response to climate treatments, but the relative abundance of grasses decreased under both warming and simultaneous application of warming, summer drought and elevated CO 2 after 3 yr. In parallel, legume relative abundance increased in all warmed treatments. Functional diversity responses varied depending on climate treatment and leaf trait. In the control treatment, patterns of variation in annual plant biomass were best explained by functional diversity during the study period. However, in warmed treatments, variation in annual plant biomass was more closely linked to the functional traits of dominant species. Conclusions Continuous, multi-year exposure to projected climate conditions has a negative impact on above-ground biomass in our grassland study system. Our data suggest that climate-induced decreases in above-ground biomass may be driven by changes in the relative abundance of plant functional groups, and could also reflect changes in soil nutrient availability. Unlike species diversity, community-level leaf traits and functional diversity appear to play an important role for above-ground biomass production, and may have indirect effects on ecosystem stability in changing climates

    Effects of Climate Change Drivers on Nitrous Oxide Fluxes in an Upland Temperate Grassland

    No full text
    International audienceDespite increasing interest in the patterns of trace gas emissions in terrestrial ecosystems, little is known about the impacts of climate change on nitrous oxide (N(2)O) fluxes. The aim of this study was to determine the importance of the three main drivers of climate change (warming, summer drought, and elevated CO(2) concentrations) on N(2)O fluxes from an extensively managed, upland grassland. Over a 2-year period, we monitored N(2)O fluxes in an in situ ecosystem manipulation experiment simulating the climate predicted for the study area in 2080 (3.5A degrees C temperature increase, 20% reduction in summer rainfall and atmospheric CO(2) levels of 600 ppm). N(2)O fluxes showed significant seasonal and interannual variation irrespective of climate treatment, and were higher in summer and autumn compared with winter and spring. Overall, N(2)O emissions showed a positive correlation with soil temperature and rainfall. Elevated temperature had a positive impact on mean annual N(2)O fluxes but effects were only significant in 2007. Contrary to expectations, neither combined summer drought and warming nor the simultaneous application of elevated atmospheric CO(2) concentrations, summer drought and warming had any significant effect on annual N(2)O fluxes. However, the maximum N(2)O flux rates observed during the study occurred when elevated CO(2) was combined with warming and drought, suggesting the potential for important, short-term N(2)O-N losses in enriched CO(2) environments. Taken together, our results suggest that the N(2)O responses of temperate, extensively managed grasslands to future climate change scenarios may be primarily driven by temperature effects
    corecore