26 research outputs found

    Phylodynamics of Hepatitis C Virus Subtype 2c in the Province of Córdoba, Argentina

    Get PDF
    The Hepatitis C Virus Genotype 2 subtype 2c (HCV-2c) is detected as a low prevalence subtype in many countries, except in Southern Europe and Western Africa. The current epidemiology of HCV in Argentina, a low-prevalence country, shows the expected low prevalence for this subtype. However, this subtype is the most prevalent in the central province of Córdoba. Cruz del Eje (CdE), a small rural city of this province, shows a prevalence for HCV infections of 5%, being 90% of the samples classified as HCV-2c. In other locations of Córdoba Province (OLC) with lower prevalence for HCV, HCV-2c was recorded in about 50% of the samples. The phylogenetic analysis of samples from Córdoba Province consistently conformed a monophyletic group with HCV-2c sequences from all the countries where HCV-2c has been sequenced. The phylogeographic analysis showed an overall association between geographical traits and phylogeny, being these associations significant (α = 0.05) for Italy, France, Argentina (places other than Córdoba), Martinique, CdE and OLC. The coalescence analysis for samples from CdE, OLC and France yielded a Time for the Most Common Recent Ancestor of about 140 years, whereas its demographic reconstruction showed a “lag” phase in the viral population until 1880 and then an exponential growth until 1940. These results were also obtained when each geographical area was analyzed separately, suggesting that HCV-2c came into Córdoba province during the migration process, mainly from Europe, which is compatible with the history of Argentina of the early 20th century. This also suggests that the spread of HCV-2c occurred in Europe and South America almost simultaneously, possibly as a result of the advances in medicine technology of the first half of the 20th century

    The ubiquitin proteasome system in neuropathology

    Get PDF
    The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed

    Partial sequencing analysis of the NS5B region confirmed the predominance of hepatitis C virus genotype 1 infection in Jeddah, Saudi Arabia.

    No full text
    Chronic hepatitis C virus (HCV) infection and its progression are major health problems that many countries including Saudi Arabia are facing. Determination of HCV genotypes and subgenotypes is critical for epidemiological and clinical analysis and aids in the determination of the ideal treatment strategy that needs to be followed and the expected therapy response. Although HCV infection has been identified as the second most predominant type of hepatitis in Saudi Arabia, little is known about the molecular epidemiology and genetic variability of HCV circulating in the Jeddah province of Saudi Arabia. The aim of this study was to determine the dominance of various HCV genotypes and subgenotypes circulating in Jeddah using partial sequencing of the NS5B region. To the best of our knowledge, this is the first study of its kind in Saudi Arabia. To characterize HCV genotypes and subgenotypes, serum samples from 56 patients with chronic HCV infection were collected and subjected to partial NS5B gene amplification and sequence analysis. Phylogenetic analysis of the NS5B partial sequences revealed that HCV/1 was the predominant genotype (73%), followed by HCV/4 (24.49%) and HCV/3 (2.04%). Moreover, pairwise analysis also confirmed these results based on the average specific nucleotide distance identity: ±0.112, ±0.112, and ±0.179 for HCV/1, HCV/4, and HCV/3, respectively, without any interference between genotypes. Notably, the phylogenetic tree of the HCV/1 subgenotypes revealed that all the isolates (100%) from the present study belonged to the HCV/1a subgenotype. Our findings also revealed similarities in the nucleotide sequences between HCV circulating in Saudi Arabia and those circulating in countries such as Morocco, Egypt, Canada, India, Pakistan, and France. These results indicated that determination of HCV genotypes and subgenotypes based on partial sequence analysis of the NS5B region is accurate and reliable for HCV subtype determination
    corecore