454 research outputs found
Therapeutic DNA Vaccine Encoding Peptide P10 against Experimental Paracoccidioidomycosis
Paracoccidioidomycosis (PCM), caused by Paracoccidioides brasiliensis, is the most prevalent invasive fungal disease in South America. Systemic mycoses are the 10th most common cause of death among infectious diseases in Brazil and PCM is responsible for more than 50% of deaths due to fungal infections. PCM is typically treated with sulfonamides, amphotericin B or azoles, although complete eradication of the fungus may not occur and relapsing disease is frequently reported. A 15-mer peptide from the major diagnostic antigen gp43, named P10, can induce a strong T-CD4+ helper-1 immune response in mice. The TEPITOPE algorithm and experimental data have confirmed that most HLA-DR molecules can present P10, which suggests that P10 is a candidate antigen for a PCM vaccine. In the current work, the therapeutic efficacy of plasmid immunization with P10 and/or IL-12 inserts was tested in murine models of PCM. When given prior to or after infection with P. brasiliensis virulent Pb 18 isolate, plasmid-vaccination with P10 and/or IL-12 inserts successfully reduced the fungal burden in lungs of infected mice. In fact, intramuscular administration of a combination of plasmids expressing P10 and IL-12 given weekly for one month, followed by single injections every month for 3 months restored normal lung architecture and eradicated the fungus in mice that were infected one month prior to treatment. The data indicate that immunization with these plasmids is a powerful procedure for prevention and treatment of experimental PCM, with the perspective of being also effective in human patients
State recognition for ‘contested languages’: a comparative study of Sardinian and Asturian, 1992–2010
While the idea of a named language as a separate and discrete identity is a political and social construct, in the cases of Sardinian and Asturian doubts over their respective ‘languageness’ have real material consequences, particularly in relation to language policy decisions at the state level. The Asturian example highlights how its lack of official status means that it is either ignored or subjected to repeated challenges to its status as a language variety deserving of recognition and support, reflecting how ‘official language’ in the Spanish context is often understood in practice as synonymous with the theoretically broader category of ‘language’. In contrast, the recent state recognition of Sardinian speakers as a linguistic minority in Italy (Law 482/1999) illustrates how legal recognition served to overcome existing obstacles to the implementation of regional language policy measures. At the same time, the limited subsequent effects of this Law, particularly in the sphere of education, are a reminder of the shortcomings of top-down policies which fail to engage with the local language practices and attitudes of the communities of speakers recognized. The contrastive focus of this article thus acknowledges the continued material consequences of top-down language classification, while highlighting its inadequacies as a language policy mechanism which reinforces artificial distinctions between speech varieties and speakers deserving of recognition
Construct validity of a figure rating scale for Brazilian adolescents
<p>Abstract</p> <p>Background</p> <p>Figure rating scales were developed as a tool to determine body dissatisfaction in women, men, and children. However, it lacks in the literature the validation of the scale for body silhouettes previously adapted. We aimed to obtain evidence for construct validity of a figure rating scale for Brazilian adolescents.</p> <p>Methods</p> <p>The study was carried out with adolescent students attending three public schools in an urban region of the municipality of Florianopolis in the State of Santa Catarina (SC). The sample comprised 232 10-19-year-old students, 106 of whom are boys and 126 girls, from the 5th "series" (i.e. year) of Primary School to the 3rd year of Secondary School. Data-gathering involved the application of an instrument containing 8 body figure drawings representing a range of children's and adolescents' body shapes, ranging from very slim (contour 1) to obese (contour 8). Weights and heights were also collected, and body mass index (BMI) was calculated later. BMI was analyzed as a continuous variable, using z-scores, and as a dichotomous categorical variable, representing a diagnosis of nutritional status (normal and overweight including obesity).</p> <p>Results</p> <p>Results showed that both males and females with larger BMI z-scores chose larger body contours. Girls with higher BMI z-scores also show higher values of body image dissatisfaction.</p> <p>Conclusion</p> <p>We provided the first evidence of validity for a figure rating scale for Brazilian adolescents.</p
Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea
<p>Abstract</p> <p>Background</p> <p>Indoor-based anti-vector interventions remain the preferred means of reducing risk of malaria transmission in malaria endemic areas around the world. Despite demonstrated success in reducing human-mosquito interactions, these methods are effective solely against endophilic vectors. It may be that outdoor locations serve as an important venue of host seeking by <it>Anopheles gambiae </it>sensu lato (s.l.) mosquitoes where indoor vector suppression measures are employed. This paper describes the host seeking activity of anopheline mosquito vectors in the Punta Europa region of Bioko Island, Equatorial Guinea. In this area, <it>An. gambiae </it>sensu stricto (s.s.) is the primary malaria vector. The goal of the paper is to evaluate the importance of <it>An gambiae </it>s.l. outdoor host seeking behaviour and discuss its implications for anti-vector interventions.</p> <p>Methods</p> <p>The venue and temporal characteristics of host seeking by anopheline vectors in a hyperendemic setting was evaluated using human landing collections conducted inside and outside homes in three villages during both the wet and dry seasons in 2007 and 2008. Additionally, five bi-monthly human landing collections were conducted throughout 2009. Collections were segregated hourly to provide a time distribution of host-seeking behaviour.</p> <p>Results</p> <p>Surprisingly high levels of outdoor biting by <it>An. gambiae </it>senso stricto and <it>An. melas </it>vectors were observed throughout the night, including during the early evening and morning hours when human hosts are often outdoors. As reported previously, <it>An. gambiae </it>s.s. is the primary malaria vector in the Punta Europa region, where it seeks hosts outdoors at least as much as it does indoors. Further, approximately 40% of <it>An. gambiae </it>s.l. are feeding at times when people are often outdoors, where they are not protected by IRS or LLINs. Repeated sampling over two consecutive dry-wet season cycles indicates that this result is independent of seasonality.</p> <p>Conclusions</p> <p><it>An. gambiae </it>s.l. mosquitoes currently seek hosts in outdoor venues as much as indoors in the Punta Europa region of Bioko Island. This contrasts with an earlier pre-intervention observation of exclusive endophagy of <it>An. gambiae </it>in this region. In light of this finding, it is proposed that the long term indoor application of insecticides may have resulted in an adaptive shift toward outdoor host seeking in <it>An. gambiae </it>s.s. on Bioko Island.</p
Independent S-Locus Mutations Caused Self-Fertility in Arabidopsis thaliana
A common yet poorly understood evolutionary transition among flowering plants is a switch from outbreeding to an inbreeding mode of mating. The model plant Arabidopsis thaliana evolved to an inbreeding state through the loss of self-incompatibility, a pollen-rejection system in which pollen recognition by the stigma is determined by tightly linked and co-evolving alleles of the S-locus receptor kinase (SRK) and its S-locus cysteine-rich ligand (SCR). Transformation of A. thaliana, with a functional AlSRKb-SCRb gene pair from its outcrossing relative A. lyrata, demonstrated that A. thaliana accessions harbor different sets of cryptic self-fertility–promoting mutations, not only in S-locus genes, but also in other loci required for self-incompatibility. However, it is still not known how many times and in what manner the switch to self-fertility occurred in the A. thaliana lineage. Here, we report on our identification of four accessions that are reverted to full self-incompatibility by transformation with AlSRKb-SCRb, bringing to five the number of accessions in which self-fertility is due to, and was likely caused by, S-locus inactivation. Analysis of S-haplotype organization reveals that inter-haplotypic recombination events, rearrangements, and deletions have restructured the S locus and its genes in these accessions. We also perform a Quantitative Trait Loci (QTL) analysis to identify modifier loci associated with self-fertility in the Col-0 reference accession, which cannot be reverted to full self-incompatibility. Our results indicate that the transition to inbreeding occurred by at least two, and possibly more, independent S-locus mutations, and identify a novel unstable modifier locus that contributes to self-fertility in Col-0
Evolutionary Sequence Modeling for Discovery of Peptide Hormones
There are currently a large number of “orphan” G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a computational framework that models spatial structure along the genomic sequence simultaneously with the temporal evolutionary path structure across species and show how such models can be used to discover new functional molecules, in particular peptide hormones, via cross-genomic sequence comparisons. The computational framework incorporates a priori high-level knowledge of structural and evolutionary constraints into a hierarchical grammar of evolutionary probabilistic models. This computational method was used for identifying novel prohormones and the processed peptide sites by producing sequence alignments across many species at the functional-element level. Experimental results with an initial implementation of the algorithm were used to identify potential prohormones by comparing the human and non-human proteins in the Swiss-Prot database of known annotated proteins. In this proof of concept, we identified 45 out of 54 prohormones with only 44 false positives. The comparison of known and hypothetical human and mouse proteins resulted in the identification of a novel putative prohormone with at least four potential neuropeptides. Finally, in order to validate the computational methodology, we present the basic molecular biological characterization of the novel putative peptide hormone, including its identification and regional localization in the brain. This species comparison, HMM-based computational approach succeeded in identifying a previously undiscovered neuropeptide from whole genome protein sequences. This novel putative peptide hormone is found in discreet brain regions as well as other organs. The success of this approach will have a great impact on our understanding of GPCRs and associated pathways and help to identify new targets for drug development
BMP-6 promotes E-cadherin expression through repressing δEF1 in breast cancer cells
<p>Abstract</p> <p>Background</p> <p>Bone morphogenetic protein-6 (BMP-6) is critically involved in many developmental processes. Recent studies indicate that BMP-6 is closely related to tumor differentiation and metastasis.</p> <p>Methods</p> <p>Quantitative RT-PCR was used to determine the expression of BMP-6, E-cadherin, and δEF1 at the mRNA level in MCF-7 and MDA-MB-231 breast cancer cells, as well as in 16 breast cancer specimens. Immunoblot analysis was used to measure the expression of δEF1 at the protein level in δEF1-overexpressing and δEF1-interfered MDA-MB-231 cells. Luciferase assay was used to determine the rhBMP-6 or δEF1 driven transcriptional activity of the E-cadherin promoter in MDA-MB-231 cells. Quantitative CHIP assay was used to detect the direct association of δEF1 with the E-cadherin proximal promoter in MDA-MB-231 cells.</p> <p>Results</p> <p>MCF-7 breast cancer cells, an ER<sup>+ </sup>cell line that expressed high levels of BMP-6 and E-cadherin exhibited very low levels of δEF1 transcript. In contrast, MDA-MB-231 cells, an ER<sup>- </sup>cell line had significantly reduced BMP-6 and E-cadherin mRNA levels, suggesting an inverse correlation between BMP-6/E-cadherin and δEF1. To determine if the same relationship exists in human tumors, we examined tissue samples of breast cancer from human subjects. In 16 breast cancer specimens, the inverse correlation between BMP-6/E-cadherin and δEF1 was observed in both ER<sup>+ </sup>cases (4 of 8 cases) and ER<sup>- </sup>cases (7 of 8 cases). Further, we found that BMP-6 inhibited δEF1 transcription, resulting in an up-regulation of E-cadherin mRNA expression. This is consistent with our analysis of the E-cadherin promoter demonstrating that BMP-6 was a potent transcriptional activator. Interestingly, ectopic expression of δEF1 was able to block BMP-6-induced transactivation of E-cadherin, whereas RNA interference-mediated down-regulation of endogenous δEF1 in breast cancer cells abolished E-cadherin transactivation by BMP-6. In addition to down-regulating the expression of δEF1, BMP-6 also physically dislodged δEF1 from E-cadherin promoter to allow the activation of E-cadherin transcription.</p> <p>Conclusion</p> <p>We conclude that repression of δEF1 plays a key role in mediating BMP-6-induced transcriptional activation of E-cadherin in breast cancer cells. Consistent with the fact that higher level of δEF1 expression is associated with more invasive phenotype of breast cancer cells, our collective data suggests that δEF1 is likely the switch through which BMP-6 restores E-cadherin-mediated cell-to-cell adhesion and prevents breast cancer metastasis.</p
Cell-Free Antigens from Paracoccidioides brasiliensis Drive IL-4 Production and Increase the Severity of Paracoccidioidomycosis
The thermally dimorphic fungus Paracoccidioides brasiliensis (Pb) is the causative agent of paracoccidioidomycosis (PCM), one of the most frequent systemic mycosis that affects the rural population in Latin America. PCM is characterized by a chronic inflammatory granulomatous reaction, which is consequence of a Th1-mediated adaptive immune response. In the present study we investigated the mechanisms involved in the immunoregulation triggered after a prior contact with cell-free antigens (CFA) during a murine model of PCM. The results showed that the inoculation of CFA prior to the infection resulted in disorganized granulomatous lesions and increased fungal replication in the lungs, liver and spleen, that paralleled with the higher levels of IL-4 when compared with the control group. The role of IL-4 in facilitating the fungal growth was demonstrated in IL-4-deficient- and neutralizing anti-IL-4 mAb-treated mice. The injection of CFA did not affect the fungal growth in these mice, which, in fact, exhibited a significant diminished amount of fungus in the tissues and smaller granulomas. Considering that in vivo anti-IL-4-application started one week after the CFA-inoculum, it implicates that IL-4-CFA-induced is responsible by the mediation of the observed unresponsiveness. Further, the characterization of CFA indicated that a proteic fraction is required for triggering the immunosuppressive mechanisms, while glycosylation or glycosphingolipids moieties are not. Taken together, our data suggest that the prior contact with soluble Pb antigens leads to severe PCM in an IL-4 dependent manner
- …