66 research outputs found
Recommended from our members
The Advent of the Transnational TV Format Trading System: A Global Commodity Chain Analysis
This article argues that the format business transformed into a trading system in the 2000s, system being defined as a singular transnational space structured by networks of interdependent economic agents, firms, institutions and places. Following the global commodity chain/global value chain approach set out by Immanuel Wallerstein and developed by Gary Gereffi, this article then examines each dimension of the global TV format commodity chain that runs through this trading system. Beginning with the governance structure, this article counter-intuitively asserts that despite the current boom in TV production, it is a buyer-driven chain with power resting firmly in the hands of those making the acquisitions: the broadcasters. Considering the chain’s geographical configuration, this article identifies three tiers of format exporters and specific trade routes along which most TV formats travel. These findings enable us to reassess the claims made by the cosmopolitanization thesis about the nature of media globalization. Contrary to this thesis, this article asserts the need to comprehend media globalization within the context of an expanding capitalist world-system, and shows that the new transnational TV format trade and its commodity chain replicate the inequalities and power structures of former trading systems
A neural tracking and motor control approach to improve rehabilitation of upper limb movements
<p>Abstract</p> <p>Background</p> <p>Restoration of upper limb movements in subjects recovering from stroke is an essential keystone in rehabilitative practices. Rehabilitation of arm movements, in fact, is usually a far more difficult one as compared to that of lower extremities. For these reasons, researchers are developing new methods and technologies so that the rehabilitative process could be more accurate, rapid and easily accepted by the patient. This paper introduces the proof of concept for a new non-invasive FES-assisted rehabilitation system for the upper limb, called smartFES (sFES), where the electrical stimulation is controlled by a biologically inspired neural inverse dynamics model, fed by the kinematic information associated with the execution of a planar goal-oriented movement. More specifically, this work details two steps of the proposed system: an <it>ad hoc </it>markerless motion analysis algorithm for the estimation of kinematics, and a neural controller that drives a synthetic arm. The vision of the entire system is to acquire kinematics from the analysis of video sequences during planar arm movements and to use it together with a neural inverse dynamics model able to provide the patient with the electrical stimulation patterns needed to perform the movement with the assisted limb.</p> <p>Methods</p> <p>The markerless motion tracking system aims at localizing and monitoring the arm movement by tracking its silhouette. It uses a specifically designed motion estimation method, that we named Neural Snakes, which predicts the arm contour deformation as a first step for a silhouette extraction algorithm. The starting and ending points of the arm movement feed an Artificial Neural Controller, enclosing the muscular Hill's model, which solves the inverse dynamics to obtain the FES patterns needed to move a simulated arm from the starting point to the desired point. Both position error with respect to the requested arm trajectory and comparison between curvature factors have been calculated in order to determine the accuracy of the system.</p> <p>Results</p> <p>The proposed method has been tested on real data acquired during the execution of planar goal-oriented arm movements. Main results concern the capability of the system to accurately recreate the movement task by providing a synthetic arm model with the stimulation patterns estimated by the inverse dynamics model. In the simulation of movements with a length of ± 20 cm, the model has shown an unbiased angular error, and a mean (absolute) position error of about 1.5 cm, thus confirming the ability of the system to reliably drive the model to the desired targets. Moreover, the curvature factors of the factual human movements and of the reconstructed ones are similar, thus encouraging future developments of the system in terms of reproducibility of the desired movements.</p> <p>Conclusion</p> <p>A novel FES-assisted rehabilitation system for the upper limb is presented and two parts of it have been designed and tested. The system includes a markerless motion estimation algorithm, and a biologically inspired neural controller that drives a biomechanical arm model and provides the stimulation patterns that, in a future development, could be used to drive a smart Functional Electrical Stimulation system (sFES). The system is envisioned to help in the rehabilitation of post stroke hemiparetic patients, by assisting the movement of the paretic upper limb, once trained with a set of movements performed by the therapist or in virtual reality. Future work will include the application and testing of the stimulation patterns in real conditions.</p
Fructan and its relationship to abiotic stress tolerance in plants
Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation
A New System for Automatic Recognition of Italian Sign Language
This work proposes a preliminary study of an automatic recognition system for the Italian Sign Language (Lingua Italiana dei Segni - LIS). Several other attempts have been made in the literature, but they are typically oriented to international languages. The system is composed of a feature extraction stage, and a sign recognition stage. Each sign is represeted by a single Hidden Markov Model, with parameters estimated through the resubstitution method. Then, starting from a set of features related to the position and the shape of head and hands, the Sequential Forward Selection technique has been applied to obtain feature vectors with the minimum dimension and the best recognition performance. Experiments have been performed using the cross-validation method on the Italian Sign Language Database A3LIS-147, maintaining the orthogonality between training and test sets. The obtained recognition accuracy averaged across all signers is 47.24%, which represents an encouraging result and demonstrates the effectiveness of the idea
- …