1,094 research outputs found

    Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Acacia auriculiformis </it>× <it>Acacia mangium </it>hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in <it>Acacia </it>hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants.</p> <p>Results</p> <p>We sequenced transcriptomes of <it>A. auriculiformis </it>and <it>A. mangium </it>from non-normalized cDNA libraries synthesized from pooled young stem and inner bark tissues using paired-end libraries and a single lane of an Illumina GAII machine. <it>De novo </it>assembly produced a total of 42,217 and 35,759 contigs with an average length of 496 bp and 498 bp for <it>A. auriculiformis </it>and <it>A. mangium </it>respectively. The assemblies of <it>A. auriculiformis </it>and <it>A. mangium </it>had a total length of 21,022,649 bp and 17,838,260 bp, respectively, with the largest contig 15,262 bp long. We detected all ten monolignol biosynthetic genes using Blastx and further analysis revealed 18 lignin isoforms for each species. We also identified five contigs homologous to R2R3-MYB proteins in other plant species that are involved in transcriptional regulation of secondary cell wall formation and lignin deposition. We searched the contigs against public microRNA database and predicted the stem-loop structures of six highly conserved microRNA families (miR319, miR396, miR160, miR172, miR162 and miR168) and one legume-specific family (miR2086). Three microRNA target genes were predicted to be involved in wood formation and flavonoid biosynthesis. By using the assemblies as a reference, we discovered 16,648 and 9,335 high quality putative Single Nucleotide Polymorphisms (SNPs) in the transcriptomes of <it>A. auriculiformis </it>and <it>A. mangium</it>, respectively, thus yielding useful markers for population genetics studies and marker-assisted selection.</p> <p>Conclusion</p> <p>We have produced the first comprehensive transcriptome-wide analysis in <it>A. auriculiformis </it>and <it>A. mangium </it>using <it>de novo </it>assembly techniques. Our high quality and comprehensive assemblies allowed the identification of many genes in the lignin biosynthesis and secondary cell wall formation in <it>Acacia </it>hybrids. Our results demonstrated that Next Generation Sequencing is a cost-effective method for gene discovery, identification of regulatory sequences, and informative markers in a non-model plant.</p

    A retrospective observational study to determine baseline characteristics and early prescribing patterns for patients receiving Alirocumab in UK clinical practice

    Get PDF
    Background Alirocumab is a fully human monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9) and has been previously shown, in the phase III ODYSSEY clinical trial program, to provide significant lowering of lowdensity lipoprotein cholesterol (LDL-C) and reduction in risk of major adverse cardiovascular events. However, real-world evidence to date is limited. Objective The primary objective was to describe baseline characteristics, clinical history, and prior lipid-lowering therapy (LLT) use of patients initiated on alirocumab in UK clinical practice following publication of health technology appraisal (HTA) body recommendations. Secondary objectives included description of alirocumab use and lipid parameter outcomes over a 4-month follow-up period. Methods In this retrospective, single-arm, observational, multicenter study, data were collected for 150 patients initiated on alirocumab. Results Mean (standard deviation; SD) age of patients was 61.4 (10.5) years and baseline median (interquartile range; IQR) LDL-C level was 4.8 (4.2–5.8) mmol/l. Alirocumab use occurred predominantly in patients with heterozygous familial hypercholesterolemia (HeFH) (n = 100/150, 66%) and those with statin intolerance (n = 123/150, 82%). Most patients started on alirocumab 75 mg (n = 108/150 [72%]) and 35 (23.3%) were up-titrated to 150 mg. Clinically significant reductions in atherogenic lipid parameters were observed with alirocumab, including LDL-C (median [IQR] change from baseline, − 53.6% [− 62.9 to − 34.9], P < 0.001). Conclusion This study highlights the unmet need for additional LLT in patients with uncontrolled hyperlipidemia and demonstrates the clinical utility of alirocumab in early real-world practice, where dosing flexibility is an important attribute of this therapeutic option

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    Elevated white cell count in acute coronary syndromes: relationship to variants in inflammatory and thrombotic genes

    Get PDF
    BACKGROUND: Elevated white blood cell counts (WBC) in acute coronary syndromes (ACS) increase the risk of recurrent events, but it is not known if this is exacerbated by pro-inflammatory factors. We sought to identify whether pro-inflammatory genetic variants contributed to alterations in WBC and C-reactive protein (CRP) in an ACS population. METHODS: WBC and genotype of interleukin 6 (IL-6 G-174C) and of interleukin-1 receptor antagonist (IL1RN intronic repeat polymorphism) were investigated in 732 Caucasian patients with ACS in the OPUS-TIMI-16 trial. Samples for measurement of WBC and inflammatory factors were taken at baseline, i.e. Within 72 hours of an acute myocardial infarction or an unstable angina event. RESULTS: An increased white blood cell count (WBC) was associated with an increased C-reactive protein (r = 0.23, p < 0.001) and there was also a positive correlation between levels of β-fibrinogen and C-reactive protein (r = 0.42, p < 0.0001). IL1RN and IL6 genotypes had no significant impact upon WBC. The difference in median WBC between the two homozygote IL6 genotypes was 0.21/mm(3 )(95% CI = -0.41, 0.77), and -0.03/mm(3 )(95% CI = -0.55, 0.86) for IL1RN. Moreover, the composite endpoint was not significantly affected by an interaction between WBC and the IL1 (p = 0.61) or IL6 (p = 0.48) genotype. CONCLUSIONS: Cytokine pro-inflammatory genetic variants do not influence the increased inflammatory profile of ACS patients

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail

    Get PDF
    Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience

    Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery

    Get PDF
    31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    Induction of tumour-specific CD8+ cytotoxic T lymphocytes by tumour lysate-pulsed autologous dendritic cells in patients with uterine serous papillary cancer

    Get PDF
    Uterine serous papillary carcinoma is a highly aggressive variant of endometrial cancer histologically similar to high grade ovarian cancer. Unlike ovarian cancer, however, it is a chemoresistant disease from onset, with responses to combined cisplatinum-based chemotherapy in the order of 20% and an extremely poor prognosis. In this study, we demonstrate that tumour lysate-pulsed autologous dendritic cells can elicit a specific CD8+ cytotoxic T lymphocyte response against autologous tumour target cells in three patients with uterine serous papillary cancer. CTL from patients 1 and 2 expressed strong cytolytic activity against autologous tumour cells, did not lyse autologous lymphoblasts or autologous EBV-transformed cell lines, and were variably cytotoxic against the NK-sensitive cell line K-562. Patient 3 CD8+ T cells expressed a modest but reproducible cytotoxicity against autologous tumour cells only at the time of the first priming. Further priming attempts with PBL collected from patient 3 after tumour progression in the lumboaortic lymph nodes were unsuccesful. Cytotoxicity against autologous tumour cells could be significantly inhibited by anti-HLA class I (W6/32) and anti-LFA-1 MAbs. Highly cytotoxic CD8+ T cells from patients 1 and 2 showed a heterogeneous CD56 expression while CD56 was not expressed by non-cytotoxic CD8+ T cells from patient 3. Using two colour flow cytometric analysis of intracellular cytokine expression at the single cell level, a striking dominance of IFN-γ expressors was detectable in CTL populations of patients 1 and 2 while in patient 3 a dominant population of CD8+ T cells expressing IL-4 and IL-10 was consistently detected. Taken together, these data demonstrate that tumour lysate-pulsed DC can be an effective tool in inducing uterine serous papillary cancer-specific CD8+ CTL able to kill autologous tumour cells in vitro. However, high levels of tumour specific tolerance in some patients may impose a significant barrier to therapeutic vaccination. These results may have important implications for the treatment in the adjuvant setting of uterine serous papillary cancer patients with active or adoptive immunotherapy

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
    corecore