1,271 research outputs found

    Standardization of epidemiological surveillance of acute rheumatic fever

    Get PDF
    Acute rheumatic fever (ARF) is a multiorgan inflammatory disorder that results from the body’s autoimmune response to pharyngitis or a skin infection caused by Streptococcus pyogenes (Strep A). Acute rheumatic fever mainly affects those in low- and middle-income nations, as well as in indigenous populations in wealthy nations, where initial Strep A infections may go undetected. A single episode of ARF puts a person at increased risk of developing long-term cardiac damage known as rheumatic heart disease. We present case definitions for both definite and possible ARF, including initial and recurrent episodes, according to the 2015 Jones Criteria, and we discuss current tests available to aid in the diagnosis. We outline the considerations specific to ARF surveillance methodology, including discussion on where and how to conduct active or passive surveillance (eg, early childhood centers/schools, households, primary healthcare, administrative database review), participant eligibility, and the surveillance population. Additional considerations for ARF surveillance, including implications for secondary prophylaxis and follow-up, ARF registers, community engagement, and the impact of surveillance, are addressed. Finally, the core elements of case report forms for ARF, monitoring and audit requirements, quality control and assurance, and the ethics of conducting surveillance are discussed

    Is abdominal wall contraction important for normal voiding in the female rat?

    Get PDF
    BACKGROUND: Normal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR) to noxious bladder distension. Normal rat voiding requires pulsatile release of urine from a pressurized bladder. The abdominal wall contraction accompanying urine flow may provide a necessary pressure increment for normal efficient pulsatile voiding. This study aimed to evaluate the occurrence and necessity of the voiding-associated abdominal wall activity in urethane-anesthetized female rats METHODS: A free-voiding model was designed to allow assessment of abdominal wall activity during voiding resulting from physiologic bladder filling, in the absence of bladder or urethral instrumentation. Physiologic diuresis was promoted by rapid intravascular hydration. Intercontraction interval (ICI), voided volumes and EMG activity of the rectus abdominis were quantified. The contribution of abdominal wall contraction to voiding was eliminated in a second group of rats by injecting botulinum-A (BTX, 5 U) into each rectus abdominis to induce local paralysis. Uroflow parameters were compared between intact free-voiding and BTX-prepared animals. RESULTS: Abdominal wall response is present in free voiding. BTX preparation eliminated the voiding-associated EMG activity. Average per-void volume decreased from 1.8 ml to 1.1 ml (p < 0.05), and reduced average flow from 0.17 ml/sec to 0.11 ml/sec (p < 0.05). Intercontraction interval (ICI) was not changed by BTX pretreatment. CONCLUSION: The voiding-associated abdominal wall response is a necessary component of normal voiding in urethane anesthetized female rats. As the proximal urethra may be the origin of the afferent signaling which results in the abdominal wall response, the importance of the bladder pressure increment due to this response may be in maintaining a normal duration intermittent pulsatile high frequency oscillatory (IPHFO)/flow phase and thus efficient voiding. We propose the term Voiding-associated Abdominal Response (VAR) for the physiologic voiding-associated EMG/abdominal wall response, to distinguish it from the visceromotor response (VMR) to noxious bladder distension

    Standardization of epidemiological surveillance of rheumatic heart disease

    Get PDF
    Rheumatic heart disease (RHD) is a long-term sequela of acute rheumatic fever (ARF), which classically begins after an untreated or undertreated infection caused by Streptococcus pyogenes (Strep A). RHD develops after the heart valves are permanently damaged due to ARF. RHD remains a leading cause of morbidity and mortality in young adults in resource-limited and low- and middle-income countries. This article presents case definitions for latent, suspected, and clinical RHD for persons with and without a history of ARF, and details case classifications, including differentiating between definite or borderline according to the 2012 World Heart Federation echocardiographic diagnostic criteria. This article also covers considerations specific to RHD surveillance methodology, including discussions on echocardiographic screening, where and how to conduct active or passive surveillance (eg, early childhood centers/schools, households, primary healthcare), participant eligibility, and the surveillance population. Additional considerations for RHD surveillance, including implications for secondary prophylaxis and follow-up, RHD registers, community engagement, and the negative impact of surveillance, are addressed. Finally, the core elements of case report forms for RHD, monitoring and audit requirements, quality control and assurance, and the ethics of conducting surveillance are discussed

    Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy

    Get PDF
    BACKGROUND: Critically ill patients develop atrophic muscle failure, which increases morbidity and mortality. Interleukin-1β (IL-1β) is activated early in sepsis. Whether IL-1β acts directly on muscle cells and whether its inhibition prevents atrophy is unknown. We aimed to investigate if IL-1β activation via the Nlrp3 inflammasome is involved in inflammation-induced atrophy. METHODS: We performed an experimental study and prospective animal trial. The effect of IL-1β on differentiated C2C12 muscle cells was investigated by analyzing gene-and-protein expression, and atrophy response. Polymicrobial sepsis was induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type mice. Skeletal muscle morphology, gene and protein expression, and atrophy markers were used to analyze the atrophy response. Immunostaining and reporter-gene assays showed that IL-1β signaling is contained and active in myocytes. RESULTS: Immunostaining and reporter gene assays showed that IL-1β signaling is contained and active in myocytes. IL-1β increased Il6 and atrogene gene expression resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1β serum levels in sepsis. As determined by muscle morphology, organ weights, gene expression, and protein content, muscle atrophy was attenuated in septic Nlrp3 knockout mice, compared to septic wild-type mice 96 h after surgery. CONCLUSIONS: IL-1β directly acts on myocytes to cause atrophy in sepsis. Inhibition of IL-1β activation by targeting Nlrp3 could be useful to prevent inflammation-induced muscle failure in critically ill patients

    The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO2 Leakage Barrier

    Get PDF
    BACKGROUND: Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO(2) fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microcompartments of heterotrophic bacteria, and the genes for these proteins are found in a large variety of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We have created a Halothiobacillus neapolitanus knockout mutant that does not produce the two paralogous CsoS4 proteins thought to occupy the vertices of the icosahedral carboxysomes and related microcompartments. Biochemical and ultrastructural analyses indicated that the mutant predominantly forms carboxysomes of normal appearance, in addition to some elongated microcompartments. Despite their normal shape, purified mutant carboxysomes are functionally impaired, although the activities of the encapsulated enzymes are not negatively affected. CONCLUSIONS/SIGNIFICANCE: In the absence of the CsoS4 proteins the carboxysome shell loses its limited permeability to CO(2) and is no longer able to provide the catalytic advantage RubisCO derives from microcompartmentalization. This study presents direct evidence that the diffusion barrier property of the carboxysome shell contributes significantly to the biological function of the carboxysome

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    Comparative analysis of carboxysome shell proteins

    Get PDF
    Carboxysomes are metabolic modules for CO2 fixation that are found in all cyanobacteria and some chemoautotrophic bacteria. They comprise a semi-permeable proteinaceous shell that encapsulates ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. Structural studies are revealing the integral role of the shell protein paralogs to carboxysome form and function. The shell proteins are composed of two domain classes: those with the bacterial microcompartment (BMC; Pfam00936) domain, which oligomerize to form (pseudo)hexamers, and those with the CcmL/EutN (Pfam03319) domain which form pentamers in carboxysomes. These two shell protein types are proposed to be the basis for the carboxysome’s icosahedral geometry. The shell proteins are also thought to allow the flux of metabolites across the shell through the presence of the small pore formed by their hexameric/pentameric symmetry axes. In this review, we describe bioinformatic and structural analyses that highlight the important primary, tertiary, and quaternary structural features of these conserved shell subunits. In the future, further understanding of these molecular building blocks may provide the basis for enhancing CO2 fixation in other organisms or creating novel biological nanostructures

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    Expression of costimulatory molecules in the bovine corpus luteum

    Get PDF
    BACKGROUND: Bovine luteal parenchymal cells express class II major histocompatibility complex (MHC) molecules and stimulate class II MHC-dependent activation of T cells in vitro. The ability of a class II MHC-expressing cell type to elicit a response from T cells in vivo is also dependent on expression of costimulatory molecules by the antigen presenting cell and delivery of a costimulatory signal to the T cell. Whether bovine luteal parenchymal cells express costimulatory molecules and can deliver the costimulatory signal is currently unknown. METHODS: Bovine luteal tissue was collected during the early (day 5; day of estrus = day 0), mid (day 11–12), or late (day 18) luteal phase of the estrous cycle, and at 0, 0.5, 1, 4, 12 or 24 hours following administration of PGF2alpha to cows on day 10 of the estrous cycle. Northern analysis was used to measure CD80 or CD86 mRNA concentrations in luteal tissue samples. Mixed luteal parenchymal cell cultures and purified luteal endothelial cell cultures were prepared, and real-time RT-PCR was used to examine the presence of CD80 and CD86 mRNA in each culture type. Monoclonal antibodies to CD80 and CD86 were added to a mixed luteal parenchymal cell-T cell co-culture in vitro T cell proliferation assay to assess the functional significance of costimulatory molecules on activation of T lymphocytes by luteal parenchymal cells. RESULTS: Northern analysis revealed CD80 and CD86 mRNAs in luteal tissue, with greatest steady-state concentrations at midcycle. CD80 and CD86 mRNAs were detected in mixed luteal parenchymal cell cultures, but only slight amounts of CD80 (and not CD86) mRNA were detected in cultures of luteal endothelial cells. Luteinizing hormone, PGF2alpha and TNF-alpha were without effect on concentrations of CD80 or CD86 mRNA in mixed luteal parenchymal cells cultures. Anti-CD80 or anti-CD86 monoclonal antibodies inhibited T cell proliferation in the in vitro T cell proliferation assay. CONCLUSION: It can be concluded from this study that parenchymal cells within the bovine CL express functional costimulatory molecules that facilitate interactions between with T cells, and these components of the antigen presentation pathway are expressed maximally in the midcycle CL

    A Novel High-Throughput Assay for Islet Respiration Reveals Uncoupling of Rodent and Human Islets

    Get PDF
    The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR) may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets.The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets.The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells
    corecore