17 research outputs found

    Lynch syndrome: barriers to and facilitators of screening and disease management

    Get PDF
    Background Lynch syndrome is a hereditary cancer with confirmed carriers at high risk for colorectal (CRC) and extracolonic cancers. The purpose of the current study was to develop a greater understanding of the factors influencing decisions about disease management post-genetic testing. Methods The study used a grounded theory approach to data collection and analysis as part of a multiphase project examining the psychosocial and behavioral impact of predictive DNA testing for Lynch syndrome. Individual and small group interviews were conducted with individuals from 10 families with the MSH2 intron 5 splice site mutation or exon 8 deletion. The data from confirmed carriers (n = 23) were subjected to re-analysis to identify key barriers to and/or facilitators of screening and disease management. Results Thematic analysis identified personal, health care provider and health care system factors as dominant barriers to and/or facilitators of managing Lynch syndrome. Person-centered factors reflect risk perceptions and decision-making, and enduring screening/disease management. The perceived knowledge and clinical management skills of health care providers also influenced participation in recommended protocols. The health care system barriers/facilitators are defined in terms of continuity of care and coordination of services among providers. Conclusions Individuals with Lynch syndrome often encounter multiple barriers to and facilitators of disease management that go beyond the individual to the provider and health care system levels. The current organization and implementation of health care services are inadequate. A coordinated system of local services capable of providing integrated, efficient health care and follow-up, populated by providers with knowledge of hereditary cancer, is necessary to maintain optimal health

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Adoptive transfer of invariant NKT cells as immunotherapy for advanced melanoma:A phase I clinical trial

    No full text
    Abstract Purpose: Invariant NKT cells (iNKT) are innate-like CD1d-restricted T cells with immunoregulatory activity in diseases including cancer. iNKT from advanced cancer patients can have reversible defects including IFNγ production, and iNKT IFNγ production may stratify for survival. Previous clinical trials using iNKT cell activating ligand α-galactosylceramide have shown clinical responses. Therefore, a phase I clinical trial was performed of autologous in vitro expanded iNKT cells in stage IIIB–IV melanoma. Experimental Design: Residual iNKT cells [&amp;lt;0.05% of patient peripheral blood mononuclear cell (PBMC)] were purified from autologous leukapheresis product using an antibody against the iNKT cell receptor linked to magnetic microbeads. iNKT cells were then expanded with CD3 mAb and IL2 in vitro to obtain up to approximately 109 cells. Results: Expanded iNKT cells produced IFNγ, but limited or undetectable IL4 or IL10. Three iNKT infusions each were completed on 9 patients, and produced only grade 1–2 toxicities. The 4th patient onward received systemic GM-CSF with their second and third infusions. Increased numbers of iNKT cells were seen in PBMCs after some infusions, particularly when GM-CSF was also given. IFNγ responses to α-galactosylceramide were increased in PBMCs from some patients after infusions, and delayed-type hypersensitivity responses to Candida increased in 5 of 8 evaluated patients. Three patients have died, three were progression-free at 53, 60, and 65 months, three received further treatment and were alive at 61, 81, and 85 months. There was no clear correlation between outcome and immune parameters. Conclusions: Autologous in vitro expanded iNKT cells are a feasible and safe therapy, producing Th1-like responses with antitumor potential. Clin Cancer Res; 23(14); 3510–9. ©2017 AACR.</jats:p

    Effective posttransplant antitumor immunity is associated with TLR-stimulating nucleic acid–immunoglobulin complexes in humans

    No full text
    Donor lymphocyte infusion (DLI), whereby donor mononuclear cells are infused into patients, is one of the few effective immunotherapeutic strategies that generate long-lasting tumor remissions. We previously demonstrated that chronic myelogenous leukemia (CML) patients treated with DLI develop high-titer plasma antibodies specific for CML-associated antigens, the majority of which have been reported to bind nucleic acids These observations led us to predict that circulating antibody-antigen complexes in DLI-responsive patients carry nucleic acids that can engage innate immune sensors. Consistent with this, we report here that post-DLI plasma from 5 CML patients that responded to DLI treatment induced massive upregulation of MIP-1α, IP-10, and IFN-α in normal blood mononuclear cells. Importantly, this was not observed with plasma obtained before DLI and from DLI nonresponders and imatinib-treated patients. This endogenous immunostimulatory activity required nucleic acid and protein for its adjuvant effect and activated antigen-presenting cells through the RNA and DNA sensors TLR8 and TLR9. Presence of the immunoglobulin Fc receptor CD32 enhanced cellular responses, suggesting that immunoglobulins associate with this activity. Finally, a TLR-induced expression signature was detectable in post-DLI but not pre-DLI blood, consistent with an active circulating TLR8/9-stimulating factor. We have therefore demonstrated that effective tumor immunity correlates with the presence of endogenous nucleic acid–immunoglobulin complexes in patient plasma, thus providing a putative mechanism for the induction of potent antigen-specific immunity against malignant cells
    corecore