50 research outputs found

    Persistent left ventricular dysfunction after acute lymphocytic myocarditis: Frequency and predictors.

    Get PDF
    BACKGROUND: Persistent left ventricular (LV) systolic dysfunction in patients with acute lymphocytic myocarditis (LM) is widely unexplored. OBJECTIVES: To assess the frequency and predictors of persistent LV dysfunction in patients with LM and reduced LVEF at admission. METHODS AND RESULTS: We retrospectively evaluated 89 consecutive patients with histologically-proven acute myocarditis enrolled at three Italian referral hospitals. A subgroup of 48 patients with LM, baseline systolic impairment and an available echocardiographic assessment at 12 months (6-18) from discharge constituted the study population. The primary study end-point was persistent LV dysfunction, defined as LVEF <50% at 1-year, and was observed in 27/48 patients (56.3%). Higher LV end-diastolic diameter at admission (odds ratio [OR] 1.22, 95% confidence interval [CI] 1.04-1.43, p = 0.002), non-fulminant presentation (OR 8.46, 95% CI 1.28-55.75, p = 0.013) and presence of a poor lymphocytic infiltrate (OR 12.40, 95% CI 1.23-124.97, p = 0.010) emerged as independent predictors of persistent LV dysfunction at multivariate analysis (area under the curve 0.91, 95% CI 0.82-0.99). Pre-discharge LVEF was lower in patients with persistent LV dysfunction compared to the others (32%±8 vs. 53%±8, p <0.001), and this single variable showed the best accuracy in predicting the study end-point (area under the curve 0.95, 95% CI 0.89-1.00). CONCLUSIONS: More than half of patients presenting with acute LM and LVEF <50% who survive the acute phase show persistent LV dysfunction after 1-year from hospital discharge. Features of subacute inflammatory process and of established myocardial damage at initial hospitalization emerged as predictors of this end-point

    Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents : a position paper of the ESC Working Group on Myocardial Function

    Get PDF
    This work was supported by AIRC IG grant 2016 19032 to S.Z.; FEDER through Compete 2020 –Programa Operacional Competitividade E Internacionalização(POCI), the project DOCNET (norte-01-0145-feder-000003), supported by Norte Portugal regional operational programme (norte 2020), under the Portugal 2020 partnership agreement, through the European Regional Development Fund (ERDF), the project NETDIAMOND (POCI-01-0145-FEDER-016385), supported by European Structural And Investment Funds, Lisbon’s regional operational program 2020 to I.P.F.; grants from FSR-FNRS, FRC (Cliniques Universitaires Saint-Luc) and from Action de Recherche ConcertĂ©e (UCLouvain) to C.B., E.P.D. and L.B; the ERA-Net-CVD project MacroERA,01KL1706, FP7-Homage N° 305507, and IMI2-CARDIATEAM (N° 821508)to S.H.,the DZHK (German Centre for Cardiovascular Research) and the German Ministry of Research and Education (BMBF)to F.W., T.E. and L.C., the Netherlands Cardiovascular Research Initiative, an initiative with support of the Dutch Heart Foundation, CVON2016-Early HFPEF, 2015-10, CVON She-PREDICTS, grant 2017-21, CVON Arena-PRIME, 2017-18, Flemish Research FoundationFWO G091018N and FWO G0B5930N to S.H.; Federico II University/Ricerca di Ateneo grant to C.G..T.; the European Research Area Networks on Cardiovascular Diseases (ERA-CVD) [LYMIT-DIS 2016, MacroERA], Fonds Wetenschappelijk Onderzoek [1160718N] to I.C; the Deutsche Forschungsgemeinschaft (DFG TH903/20-1, KFO311), the Transregio-SFB INST 95/15641 and the EU Horizon 2020 project Cardioregenix (GA 825670)to T.TPeer reviewedPostprin

    Genetic Basis of Myocarditis: Myth or Reality?

    Get PDF
    n/
    corecore