20 research outputs found

    Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients

    Get PDF
    Excitation of photo-current transients at semiconductor surfaces by subpicosecond optical pulses gives rise to emission of electromagnetic pulses of terahertz (THz) frequency radiation. To correlate the THz emission with the photo-excited charge density distribution and the photo-current direction, we mapped near-field and far-field distributions of the generated THz waves from GaAs and Fe-doped InGaAs surfaces. The experimental results show that the charge dynamics in the plane of the surface can radiate substantially stronger THz pulses than the charge dynamics in the direction normal to the surface, which is generally regarded as the dominant origin of the emission

    A high responsivity, broadband waveguide uni-travelling carrier photodiode

    Get PDF
    A 0.2 AAV responsivity waveguide-uni-travelling carrier photodiode with a -3 dB electrical frequency response > 108 GHz is demonstrated. Up to -5 dBm electrical power at 110 GHz, and 28 mA photocurrent (DC excitation) were detected. The photodiode was also integrated with an antenna to permit a record breaking emission of up to 148 mu W at 457 GHz and 25 mu W at 914 GHz

    Mapping the distribution of photo-currents responsible for generation of terahertz pulses at semiconductor surfaces

    Get PDF
    Photo-excited charge carriers at semiconductor surfaces generate pulses of terahertz (THz) radiation. By mapping the spatial distribution of the THz radiation in the near-field and the angular emission pattern in the far-field, we link the THz generation process to the photo-current direction. We find that inplane carrier dynamics play an important role and can even be the dominant source of THz radiation

    Terahertz generation mechanism in nano-grating electrode photomixers on Fe-doped InGaAsP

    Get PDF
    We report the generation mechanism associated with nano-grating electrode photomixers fabricated on Fe-doped InGaAsP substrates. Two different emitter designs incorporating nano-gratings coupled to the same broadband antenna were characterized in a continuous-wave terahertz (THz) frequency system employing telecommunications wavelength lasers for generation and coherent detection. The current-voltage characteristics and THz emission bandwidth of the emitters is compared for different bias polarities and optical polarisations. The THz output from the emitters is also mapped as a function of the position of the laser excitation spot for both continuous-wave and pulsed excitation. This mapping, together with full-wave simulations of the structures, confirms the generation mechanism to be due to an enhanced optical electric field at the grating tips resulting in increased optical absorption, coinciding with a concentration of the electrostatic field

    Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector

    Get PDF
    We present results for an heterodyne optical phase-lock loop (OPLL), monolithically integrated on InP with external phase detector and loop filter, which phase locks the integrated laser to an external source, for offset frequencies tuneable between 0.6 GHz and 6.1 GHz. The integrated semiconductor laser emits at 1553 nm with 1.1 MHz linewidth, while the external laser has a linewidth less than 150 kHz. To achieve high quality phase locking with lasers of these linewidths, the loop delay has been made less than 1.8 ns. Monolithic integration reduces the optical path delay between the laser and photodiode to less than 20 ps. The electronic part of the OPLL was implemented using a custom-designed feedback circuit with a propagation delay of similar to 1 ns and an open-loop bandwidth greater than 1 GHz. The heterodyne signal between the locked slave laser and master laser has phase noise below. 90 dBc/Hz for frequency offsets greater than 20 kHz and a phase error variance in 10 GHz bandwidth of 0.04 rad(2). (C) 2011 Optical Society of Americ

    Photonic synthesis of THz signals

    Get PDF
    In this paper we present a review of our work on photonic synthesis of high spectral purity THz signals. This work includes novel developments on optical frequency comb generation (integrated, 2THz span, 25 GHz spacing), frequency locking of semiconductor lasers (1kHz channel stability, 10 ns switching time) and high speed photodetectors integrated with antennas (3dB bandwidth > 108 GHz, 0.2 A/W responsivity 148 mu W output power at 457 GHz)

    Millimeter-Wave Photonic Components for Broadband Wireless Systems

    Get PDF
    We report on advanced millimeter-wave (mm-wave) photonic components for broadband radio transmission. We have developed self-pulsating 60-GHz range quantum-dash Fabry-Perot mode-locked laser diodes (MLLD) for passive, i.e., unlocked, photonic mm-wave generation with comparably low-phase noise level of -76 dBc/Hz @ 100-kHz offset from a 58.8-GHz carrier. We further report on high-frequency 1.55-mu m waveguide photodiodes (PD) with partially p-doped absorber for broadband operation (f(3dB) similar to 70-110 GHz) and peak output power levels up to +4.5 dBm @ 110 GHz as well as wideband antenna integrated photomixers for operation within 30-300 GHz and peak output power levels of -11 dBm @ 100 GHz and 6-mA photocurrent. We further present compact 60-GHz wireless transmitter and receiver modules for wireless transmission of uncompressed 1080p (2.97 Gb/s) HDTV signals utilizing the developed MLLD and mm-wave PD. Error-free (BER = 10(-9), 2(31) - 1 PRBS, NRZ) outdoor wireless transmission of 3 Gb/s over 25 m is demonstrated, as well as wireless transmission of uncompressed HDTV signals in the 60-GHz band. Finally, an advanced 60-GHz photonic wireless system offering record data throughputs and spectral efficiencies is presented. For the first time, we demonstrate photonic wireless transmission of data throughputs up to 27.04 Gb/s (EVM 17.6%) using a 16-QAM OFDM modulation format resulting in a spectral efficiency as high as 3.86 b/s/Hz. Wireless experiments were carried out within the regulated 57-64-GHz band in a lab environment with a maximum transmit power of -1 dBm and 23 dBi gain antennas for a wireless span of 2.5 m. This span can be extended to some 100 m when using high-gain antennas and higher transmit power levels

    The Bank of Standardized Stimuli (BOSS), a New Set of 480 Normative Photos of Objects to Be Used as Visual Stimuli in Cognitive Research

    Get PDF
    There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli

    Estimating seagrass blue carbon and policy implications: The Australian perspective

    Full text link
    © Springer International Publishing AG, part of Springer Nature 2018. Blue carbon policy supports carbon sequestration whilst also conserving our remaining seagrass meadows. The complex biogeochemical processes within the sediment of seagrass meadows are responsible for the longevity of the stored carbon. Carbon stock and accumulation rates are controlled by the interaction of hydrodynamic, geochemical and biotic processes unique to each meadow. Carbon content (stock and flux) of a meadow must be quantified for inclusion in carbon accounting, whether for market trading or national greenhouse gas accounting. Management of seagrass blue carbon also requires estimates of additionality, leakage, permanence, conversion and emission factors
    corecore