20 research outputs found

    Genome-Transcriptome-Functional Connectivity-Cognition Link Differentiates Schizophrenia From Bipolar Disorder.

    Get PDF
    BACKGROUND AND HYPOTHESIS: Schizophrenia (SZ) and bipolar disorder (BD) share genetic risk factors, yet patients display differential levels of cognitive impairment. We hypothesized a genome-transcriptome-functional connectivity (frontoparietal)-cognition pathway linked to SZ-versus-BD differences, and conducted a multiscale study to delineate this pathway. STUDY DESIGNS: Large genome-wide studies provided single nucleotide polymorphisms (SNPs) conferring more risk for SZ than BD, and we identified their regulated genes, namely SZ-biased SNPs and genes. We then (a) computed the polygenic risk score for SZ (PRSSZ) of SZ-biased SNPs and examined its associations with imaging-based frontoparietal functional connectivity (FC) and cognitive performances; (b) examined the spatial correlation between ex vivo postmortem expressions of SZ-biased genes and in vivo, SZ-related FC disruptions across frontoparietal regions; (c) investigated SZ-versus-BD differences in frontoparietal FC; and (d) assessed the associations of frontoparietal FC with cognitive performances. STUDY RESULTS: PRSSZ of SZ-biased SNPs was significantly associated with frontoparietal FC and working memory test scores. SZ-biased genes\u27 expressions significantly correlated with SZ-versus-BD differences in FC across frontoparietal regions. SZ patients showed more reductions in frontoparietal FC than BD patients compared to controls. Frontoparietal FC was significantly associated with test scores of multiple cognitive domains including working memory, and with the composite scores of all cognitive domains. CONCLUSIONS: Collectively, these multiscale findings support the hypothesis that SZ-biased genetic risk, through transcriptome regulation, is linked to frontoparietal dysconnectivity, which in turn contributes to differential cognitive deficits in SZ-versus BD, suggesting that potential biomarkers for more precise patient stratification and treatment

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia

    Summary-data based Mendelian randomization identifies gene expression regulatory polymorphisms associated with bovine paratuberculosis by modulation of the nuclear factor Kappa β (NF-κß)-mediated inflammatory response

    Get PDF
    <p>Genome-wide association studies (GWAS) have identified host genetic variants associated with paratuberculosis (PTB) susceptibility. Most of the GWAS-identified SNPs are in non-coding regions. Connecting these non-coding variants and downstream affected genes is a challenge and, up to date, only a few functional mutations or expression quantitative loci (cis-eQTLs) associated with PTB susceptibility have been identified. In the current study, the associations between imputed whole-genome sequence genotypes and whole RNA-Sequencing data from peripheral blood (PB) and ileocecal valve (ICV) samples of Spanish Holstein cows (N = 16) were analyzed with TensorQTL. This approach allowed the identification of 88 and 37 cis-eQTLs regulating the expression levels of 90 and 37 genes in PB and ICV samples, respectively (False discorey rate, FDR ≤ 0.05). Next, we applied summary-based data Mendelian randomization (SMR) to integrate the cis-eQTL dataset with GWAS data obtained from a cohort of 813 culled cattle that were classified according to the presence or absence of PTB-associated histopathological lesions in gut tissues. After multiple testing corrections (FDR ≤ 0.05), we identified two novel cis-eQTLs affecting the expression of the early growth response factor 4 (EGR4) and the bovine neuroblastoma breakpoint family member 6-like protein isoform 2 (MGC134040) that showed pleiotropic associations with the presence of multifocal and diffuse lesions in gut tissues; P = 0.002 and P = 0.017, respectively. While EGR4 acts as a brake on T-cell proliferation and cytokine production through interaction with the nuclear factor Kappa β (NF-κß), MGC134040 is a target gene of NF-κß. Our findings provide a better understanding of the genetic factors influencing PTB outcomes, confirm that the multifocal lesions are localized/confined lesions that have different underlying host genetics than the diffuse lesions, and highlight regulatory SNPs and regulated-gene targets to design future functional studies.</p&gt

    Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI
    corecore