1,920 research outputs found

    Signatures of quantum criticality in the thermopower of Ba(Fe(1-x)Co(x))2As2

    Get PDF
    We demonstrate that the thermopower (S) can be used to probe the spin fluctuations (SFs) in proximity to the quantum critical point (QCP) in Fe-based superconductors. The sensitivity of S to the entropy of charge carriers allows us to observe an increase of S/T in Ba(Fe(1-x)Co(x))2As2 close to the spin-density-wave (SDW) QCP. This behavior is due to the coupling of low-energy conduction electrons to two-dimensional SFs, similar to heavy-fermion systems. The low-temperature enhancement of S/T in the Co substitution range 0.02 < x < 0.1 is bordered by two Lifshitz transitions, and it corresponds to the superconducting region, where a similarity between the electron and non-reconstructed hole pockets exists. The maximal S/T is observed in proximity to the commensurate-to-incommensurate SDW transition, for critical x_c ~ 0.05, close to the highest superconducting T_c. This analysis indicates that low-T thermopower is influenced by critical spin fluctuations which are important for the superconducting mechanism

    Research on applied bioelectrochemistry First quarterly progress report, 14 Mar. - 30 Jun. 1963

    Get PDF
    Optimum use of human waste as electrochemical fuels by urea bacterial organism conversion

    Interplay between superconductivity and itinerant magnetism in underdoped Ba1−x_{1-x}Kx_xFe2_2As2_2 (x=x= 0.2) probed by the response to controlled point-like disorder

    Full text link
    The response of superconductors to controlled introduction of point-like disorder is an important tool to probe their microscopic electronic collective behavior. In the case of iron-based superconductors (IBS), magnetic fluctuations presumably play an important role in inducing high temperature superconductivity. In some cases, these two seemingly incompatible orders coexist microscopically. Therefore, understanding how this unique coexistence state is affected by disorder can provide important information about the microscopic mechanisms involved. In one of the most studied pnictide family, hole-doped Ba1−x_{1-x}Kx_xFe2_2As2_2 (BaK122), this coexistence occurs over a wide range of doping levels, 0.16~≲x≲\lesssim x \lesssim ~0.25. We used relativistic 2.5 MeV electrons to induce vacancy-interstitial (Frenkel) pairs that act as efficient point-like scattering centers. Upon increasing dose of irradiation, the superconducting transition temperature TcT_c decreases dramatically. In the absence of nodes in the order parameter this provides a strong support for a sign-changing s±s_{\pm} pairing. Simultaneously, in the normal state, there is a strong violation of the Matthiessen's rule and a decrease (surprisingly, at the same rate as TcT_c) of the magnetic transition temperature TsmT_{sm}, which indicates the itinerant nature of the long-range magnetic order. Comparison of the hole-doped BaK122 with electron-doped Ba(Fex_xCo1−x_{1-x})2_2As2_2 (FeCo122) with similar Tsm∼T_{sm}\sim110~K, x=x=0.02, reveals significant differences in the normal states, with no apparent Matthiessen's rule violation above TsmT_{sm} on the electron-doped side. We interpret these results in terms of the distinct impact of impurity scattering on the competing itinerant antiferromagnetic and s±s_{\pm} superconducting orders

    Ferromagnetism or slow paramagnetic relaxation in Fe-doped Li3_3N?

    Get PDF
    We report on isothermal magnetization, M\"ossbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrstalline Li2_2(Li1−x_{1-x}Fex_x)N with x=0x = 0 and x≈0.30x \approx 0.30. Magnetic hysteresis emerges at temperatures below T≈50 T \approx 50\,K with coercivity fields of up to μ0H=11.6 \mu_0H = 11.6\,T at T=2 T = 2\,K and magnetic anisotropy energies of 310 310\,K (27 27\,meV). The ac susceptibility is strongly frequency dependent (f = 10f\,=\,10--10,000 10,000\,Hz) and reveals an effective energy barrier for spin reversal of ΔE≈1100 \Delta E \approx 1100\,K. The relaxation times follow Arrhenius behavior for T>25 T > 25\,K. For T<10 T < 10\,K, however, the relaxation times of τ≈1010 \tau \approx 10^{10}\,s are only weakly temperature-dependent indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 25\,J molFe−1 ^{-1}_{\rm Fe}\,K−1^{-1} which significantly exceeds RRln2, the value expected for the entropy of a ground state doublet. Thermal expansion and magnetostriction indicate a weak magneto-elastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2_2(Li1−x_{1-x}Fex_x)N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.Comment: 12 pages, 10 figure

    Anisotropy Reversal of the Upper Critical Field at Low Temperatures and Spin-Locked Superconductivity in K2Cr3As3

    Get PDF
    We report the first measurements of the anisotropic upper critical field Hc2(T)H_{c2}(T) for K2_{2}Cr3_{3}As3_{3} single crystals up to 60 T and T>0.6T > 0.6 K. Our results show that the upper critical field parallel to the Cr chains, Hc2∥(T)H_{c2}^\parallel (T), exhibits a paramagnetically-limited behavior, whereas the shape of the Hc2⊥(T)H_{c2}^\perp (T) curve (perpendicular to the Cr chains) has no evidence of paramagnetic effects. As a result, the curves Hc2⊥(T)H_{c2}^\perp (T) and Hc2∥(T)H_{c2}^\parallel(T) cross at T≈4T\approx 4 K, so that the anisotropy parameter γH(T)=Hc2⊥/Hc2∥(T)\gamma_H(T)=H_{c2}^\perp/H_{c2}^\parallel (T) increases from γH(Tc)≈0.35\gamma_H(T_c)\approx 0.35 near TcT_c to γH(0)≈1.7\gamma_H(0)\approx 1.7 at 0.6 K. This behavior of Hc2∥(T)H_{c2}^\|(T) is inconsistent with triplet superconductivity but suggests a form of singlet superconductivity with the electron spins locked onto the direction of Cr chains

    Epilogue: Superconducting Materials Past, Present and Future

    Get PDF
    Experimental contributors to the field of Superconducting Materials share their informal views on the subject.Comment: Epilogue to Physica C Special Issue on Superconducting Materials, Volume 514 (2015

    Systematic effects of carbon doping on the superconducting properties of Mg(B1−x_{1-x}Cx_x)2_2

    Full text link
    The upper critical field, Hc2H_{c2}, of Mg(B1−x_{1-x}Cx_x)2_2 has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped boron filaments are prepared by CVD techniques, and then these fibers are then exposed to Mg vapor to form the superconducting compound. The transition temperatures are depressed about 1K/1 K/% C and Hc2(T=0)H_{c2}(T=0) rises at about 5T/5 T/% C. This means that 3.5% C will depress TcT_c from 39.2K39.2 K to 36.2K36.2 K and raise Hc2(T=0)H_{c2}(T=0) from 16.0T16.0 T to 32.5T32.5 T. Higher fields are probably attainable in the region of 5% C to 7% C. These rises in Hc2H_{c2} are accompanied by a rise in resistivity at 40K40 K from about 0.5μΩcm0.5 \mu \Omega cm to about 10μΩcm10 \mu \Omega cm. Given that the samples are polycrystalline wire segments, the experimentally determined Hc2(T)H_{c2}(T) curves represent the upper Hc2(T)H_{c2}(T) manifold associated with H⊥cH\perp c

    Remarkably robust and correlated coherence and antiferromagnetism in (Ce1−x_{1-x}Lax_x)Cu2_2Ge2_2

    Get PDF
    We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce1−x_{1-x}Lax_x)Cu2_2Ge2_2 single crystals (0 ≤x≤\leq x\leq 1). With La substitution, the antiferromagnetic temperature TNT_N is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x>x> 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below TcohT_{coh} up to ∼\sim 0.9 of La, indicating a small percolation limit ∼\sim 9%\% of Ce that separates a coherent regime from a single-ion Kondo impurity regime. TcohT_{coh} as a function of magnetic field was found to have different behavior for xx 0.9. Remarkably, (Tcoh)2(T_{coh})^2 at HH = 0 was found to be linearly proportional to TNT_N. The jump in the magnetic specific heat δCm\delta C_{m} at TNT_N as a function of TK/TNT_K/T_N for (Ce1−x_{1-x}Lax_x)Cu2_2Ge2_2 follows the theoretical prediction based on the molecular field calculation for the SS = 1/2 resonant level model
    • …
    corecore