1,571 research outputs found
Anisotropy Reversal of the Upper Critical Field at Low Temperatures and Spin-Locked Superconductivity in K2Cr3As3
We report the first measurements of the anisotropic upper critical field
for KCrAs single crystals up to 60 T and K. Our results show that the upper critical field parallel to the Cr
chains, , exhibits a paramagnetically-limited behavior,
whereas the shape of the curve (perpendicular to the Cr
chains) has no evidence of paramagnetic effects. As a result, the curves
and cross at K, so that
the anisotropy parameter
increases from near to at 0.6 K. This behavior of is inconsistent with triplet
superconductivity but suggests a form of singlet superconductivity with the
electron spins locked onto the direction of Cr chains
Giant microwave absorption in fine powders of superconductors
Enhanced microwave absorption, larger than that in the normal state, is
observed in fine grains of type-II superconductors (MgB and KC)
for magnetic fields as small as a few of the upper critical field. The
effect is predicted by the theory of vortex motion in type-II superconductors,
however its direct observation has been elusive due to skin-depth limitations;
conventional microwave absorption studies employ larger samples where the
microwave magnetic field exclusion significantly lowers the absorption. We show
that the enhancement is observable in grains smaller than the penetration
depth. A quantitative analysis on KC in the framework of the
Coffey--Clem (CC) theory explains well the temperature dependence of the
microwave absorption and also allows to determine the vortex pinning force
constant
Low Temperature Thermodynamic Properties of the Heavy Fermion Compound YbAgGe Close to the Field-Induced Quantum Critical Point
We present temperature and field dependent heat capacity and magnetization
data taken at temperatures down to 50 mK and in an applied magnetic field up to
11.5 Tesla for YbAgGe, a heavy-fermion compound with a field induced quantum
critical point. These data clearly indicate that the same electronic degrees of
freedom are responsible for the features seen in both specific heat and
magnetization data. In addition, they further refine the different boundaries
suggested for the H - T phase diagram of YbAgGe through previous,
magneto-transport measurements, and allow for further understanding of
different phases on the H - T phase diagram, in particular, clearly
disconnecting the field-induced quantum critical point in YbAgGe from any sort
of saturation of the Yb moment in higher applied magnetic field
Unpaired Electrons in the Heavy-Fermion Superconductor CeCoIn_{5}
Thermal conductivity and specific heat were measured in the superconducting
state of the heavy fermion material Ce_{1-x}La_{x}CoIn_{5}. With increasing
impurity concentration x, the suppression of T_{c} is accompanied by the
increase in the residual electronic specific heat expected of a d-wave
superconductor, but it occurs in parallel with a decrease in residual
electronic thermal conductivity. This contrasting behavior reveals the presence
of uncondensed electrons coexisting with nodal quasiparticles. An extreme
multiband scenario is proposed, with a d-wave superconducting gap on the
heavy-electron sheets of the Fermi surface and a negligible gap on the light,
three-dimensional pockets.Comment: 4 pages, 3 figure
Direct observation of the high magnetic field effect on the Jahn-Teller state in TbVO4
We report the first direct observation of the influence of high magnetic
fields on the Jahn-Teller (JT) transition in TbVO4. Contrary to spectroscopic
and magnetic methods, X-ray diffraction directly measures the JT distortion;
the splitting between the (311)/(131) and (202)/(022) pairs of Bragg
reflections is proportional to the order parameter. Our experimental results
are compared to mean field calculations, taking into account all possible
orientations of the grains relative to the applied field, and qualitative
agreement is obtained.Comment: 11 pages, 4 figures, submitted to Phys. Rev. Let
Do cavies talk? The effect of anthropomorphic picture books on children\u27s knowledge about animals
Many books for young children present animals in fantastical and unrealistic ways, such as wearing clothes, talking and engaging in human-like activities. This research examined whether anthropomorphism in children\u27s books affects children\u27s learning and conceptions of animals, by specifically assessing the impact of depictions (a bird wearing clothes and reading a book) and language (bird described as talking and as having human intentions). In Study 1, 3-, 4-, and 5-year-old children saw picture books featuring realistic drawings of a novel animal. Half of the children also heard factual, realistic language, while the other half heard anthropomorphized language. In Study 2, we replicated the first study using anthropomorphic illustrations of real animals. The results show that the language used to describe animals in books has an effect on children\u27s tendency to attribute human-like traits to animals, and that anthropomorphic storybooks affect younger children\u27s learning of novel facts about animals. These results indicate that anthropomorphized animals in books may not only lead to less learning but also influence children\u27s conceptual knowledge of animals
Design Rules and Analysis of a Capture Mechanism for Rendezvous between a Space Tether and Payload
Momentum-exchange/electrodynamic reboost (MXER) tether systems have been proposed to serve as an "upper stage in space". A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, it would slowly rebuild its orbital momentum through electrodynamic thrust, minimizing the use of propellant. One of the primary challenges in developing a momentum-exchange/electrodynamic reboost tether system as identified by the 2003 MXER Technology Assessment Group is in the development of a mechanism that will enable the processes of capture, carry and release of a payload by the rotating tether as required by the MXER tether approach. This paper will present a concept that will achieve the desired goals of the capture system. This solution is presented as a multi-DOF (degree-of-freedom) capture mechanism with nearly passive operation that features matching of the capture space and expected window of capture error, efficient use of mass and nearly passive actuation during the capture process. This paper will describe the proposed capture mechanism concept and provide an evaluation of the concept through a dynamic model and experimental tests performed on a prototype article of the mechanism in a dynamically similar environment. This paper will also develop a set of rules to guide the design of such a capture mechanism based on analytical and experimental analyses. The primary contributions of this paper will be a description of the proposed capture mechanism concept, a collection of rules to guide its design, and empirical and model information that can be used to evaluate the capability of the concep
Experimental Setup for the Measurement of the Thermoelectric Power in Zero and Applied Magnetic Field
An experimental setup was developed for the measurement of the thermoelectric
power (TEP, Seebeck coefficient) in the temperature range from 2 to 350 K and
magnetic fields up to 140 kOe. The system was built to fit in a commercial
cryostat and is versatile, accurate and automated; using two heaters and two
thermometers increases the accuracy of the TEP measurement. High density data
of temperature sweeps from 2 to 350 K can be acquired in under 16 hours and
high density data of isothermal field sweeps from 0 to 140 kOe can be obtained
in under 2 hours. Calibrations for the system have been performed on a platinum
wire and BiSrCaCuO high superconductors.
The measured TEP of phosphor-bronze (voltage lead wire) turns to be very small,
where the absolute TEP value of phosphor-bronze wire is much less than 0.5
V/K below 80 K. For copper and platinum wires measured against to the
phosphor-bronze wire, the agreement between measured results and the literature
data is good. To demonstrate the applied magnetic field response of the system,
we report measurements of the TEP on single crystal samples of LaAgSb and
CeAgSb in fields up to 140 kOe.Comment: 10 pages, 8 figures. accepted in Measurement Science and Technolog
- …