216 research outputs found

    Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons

    Get PDF
    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function

    Initial/boundary-value problems of tumor growth within a host tissue

    Full text link
    This paper concerns multiphase models of tumor growth in interaction with a surrounding tissue, taking into account also the interplay with diffusible nutrients feeding the cells. Models specialize in nonlinear systems of possibly degenerate parabolic equations, which include phenomenological terms related to specific cell functions. The paper discusses general modeling guidelines for such terms, as well as for initial and boundary conditions, aiming at both biological consistency and mathematical robustness of the resulting problems. Particularly, it addresses some qualitative properties such as a priori nonnegativity, boundedness, and uniqueness of the solutions. Existence of the solutions is studied in the one-dimensional time-independent case.Comment: 30 pages, 5 figure

    Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications

    Get PDF
    Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis

    O(12) limit and complete classification of symmetry schemes in proton-neutron interacting boson model

    Full text link
    It is shown that the proton-neutron interacting boson model (pnIBM) admits new symmetry limits with O(12) algebra which break F-spin but preserves the quantum number M_F. The generators of O(12) are derived and the quantum number `v' of O(12) for a given boson number N is determined by identifying the corresponding quasi-spin algebra. The O(12) algebra generates two symmetry schemes and for both of them, complete classification of the basis states and typical spectra are given. With the O(12) algebra identified, complete classification of pnIBM symmetry limits with good M_F is established.Comment: 22 pages, 1 figur

    SARS-COV-2 comorbidity network and outcome in hospitalized patients in Crema, Italy

    Get PDF
    We report onset, course, correlations with comorbidities, and diagnostic accuracy of nasopharyngeal swab in 539 individuals suspected to carry SARS-COV-2 admitted to the hospital of Crema, Italy. All individuals underwent clinical and laboratory exams, SARS-COV-2 reverse transcriptase-polymerase chain reaction on nasopharyngeal swab, and chest X-ray and/or computed tomography (CT). Data on onset, course, comorbidities, number of drugs including angiotensin converting enzyme (ACE) inhibitors and angiotensin-II-receptor antagonists (sartans), follow-up swab, pharmacological treatments, non-invasive respiratory support, ICU admission, and deaths were recorded. Among 411 SARS-COV-2 patients (67.7% males) median age was 70.8 years (range 5-99). Chest CT was performed in 317 (77.2%) and showed interstitial pneumonia in 304 (96%). Fatality rate was 17.5% (74% males), with 6.6% in 60-69 years old, 21.1% in 70-79 years old, 38.8% in 80-89 years old, and 83.3% above 90 years. No death occurred below 60 years. Non-invasive respiratory support rate was 27.2% and ICU admission 6.8%. Charlson comorbidity index and high Creactive protein at admission were significantly associated with death. Use of ACE inhibitors or sartans was not associated with outcomes. Among 128 swab negative patients at admission (63.3% males) median age was 67.7 years (range 1-98). Chest CT was performed in 87 (68%) and showed interstitial pneumonia in 76 (87.3%). Follow-up swab turned positive in 13 of 32 patients. Using chest CT at admission as gold standard on the entire study population of 539 patients, nasopharyngeal swab had 80% accuracy. Comorbidity network analysis revealed a more homogenous distribution 60-40 aged SARS-COV-2 patients across diseases and a crucial different interplay of diseases in the networks of deceased and survived patients. SARS-CoV-2 caused high mortality among patients older than 60 years and correlated with pre-existing multiorgan impairment. Copyright

    Partial Dynamical Symmetry in the Symplectic Shell Model

    Get PDF
    We present an example of a partial dynamical symmetry (PDS) in an interacting fermion system and demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole interaction, thus shedding new light on this important interaction. Specifically, in the framework of the symplectic shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU(3) symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic expressions for the energies of these states and E2 transition strengths between them. Characteristics of both pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate, as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously established partial SU(3) symmetry in the Interacting Boson Model are considered.Comment: 9 figure

    Chemotherapy in advanced ovarian cancer: four systematic meta-analyses of individual patient data from 37 randomized trials. Advanced Ovarian Cancer Trialists' Group.

    Get PDF
    The purpose of this systematic study was to provide an up to date and reliable quantitative summary of the relative benefits of various types of chemotherapy (non-platinum vs platinum, single-agent vs combination and carboplatin vs cisplatin) in the treatment of advanced ovarian cancer. Also, to investigate whether well-defined patient subgroups benefit more or less from cisplatin- or carboplatin-based therapy. Meta-analyses were based on updated individual patient data from all available randomized controlled trials (published and unpublished), including 37 trials, 5667 patients and 4664 deaths. The results suggest that platinum-based chemotherapy is better than non-platinum therapy, show a trend in favour of platinum combinations over single-agent platinum, and suggest that cisplatin and carboplatin are equally effective. There is no good evidence that cisplatin is more or less effective than carboplatin in any particular subgroup of patients

    Membrane Surface Nanostructures and Adhesion Property of T Lymphocytes Exploited by AFM

    Get PDF
    The activation of T lymphocytes plays a very important role in T-cell-mediated immune response. Though there are many related literatures, the changes of membrane surface nanostructures and adhesion property of T lymphocytes at different activation stages have not been reported yet. However, these investigations will help us further understand the biophysical and immunologic function of T lymphocytes in the context of activation. In the present study, the membrane architectures of peripheral blood T lymphocytes were obtained by AFM, and adhesion force of the cell membrane were measured by acquiring force–distance curves. The results indicated that the cell volume increased with the increases of activation time, whereas membrane surface adhesion force decreased, even though the local stiffness for resting and activated cells is similar. The results provided complementary and important data to further understand the variation of biophysical properties of T lymphocytes in the context of in vitro activation
    • …
    corecore