475 research outputs found
Multifractal Properties of Price Fluctuations of Stocks and Commodities
We analyze daily prices of 29 commodities and 2449 stocks, each over a period
of years. We find that the price fluctuations for commodities have
a significantly broader multifractal spectrum than for stocks. We also propose
that multifractal properties of both stocks and commodities can be attributed
mainly to the broad probability distribution of price fluctuations and
secondarily to their temporal organization. Furthermore, we propose that, for
commodities, stronger higher order correlations in price fluctuations result in
broader multifractal spectra.Comment: Published in Euro Physics Letters (14 pages, 5 figures
Effective Interactions and Volume Energies in Charge-Stabilized Colloidal Suspensions
Charge-stabilized colloidal suspensions can be conveniently described by
formally reducing the macroion-microion mixture to an equivalent one-component
system of pseudo-particles. Within this scheme, the utility of a linear
response approximation for deriving effective interparticle interactions has
been demonstrated [M. J. Grimson and M. Silbert, Mol. Phys. 74, 397 (1991)].
Here the response approach is extended to suspensions of finite-sized macroions
and used to derive explicit expressions for (1) an effective electrostatic pair
interaction between pseudo-macroions and (2) an associated volume energy that
contributes to the total free energy. The derivation recovers precisely the
form of the DLVO screened-Coulomb effective pair interaction for spherical
macroions and makes manifest the important influence of the volume energy on
thermodynamic properties of deionized suspensions. Excluded volume corrections
are implicitly incorporated through a natural modification of the inverse
screening length. By including nonlinear response of counterions to macroions,
the theory may be generalized to systematically investigate effective many-body
interactions.Comment: 13 pages (J. Phys.: Condensed Matter, in press
Finite-Size Scaling in Two-dimensional Continuum Percolation Models
We test the universal finite-size scaling of the cluster mass order parameter
in two-dimensional (2D) isotropic and directed continuum percolation models
below the percolation threshold by computer simulations. We found that the
simulation data in the 2D continuum models obey the same scaling expression of
mass M to sample size L as generally accepted for isotropic lattice problems,
but with a positive sign of the slope in the ln-ln plot of M versus L. Another
interesting aspect of the finite-size 2D models is also suggested by plotting
the normalized mass in 2D continuum and lattice bond percolation models, versus
an effective percolation parameter, independently of the system structure (i.e.
lattice or continuum) and of the possible directions allowed for percolation
(i.e. isotropic or directed) in regions close to the percolation thresholds.
Our study is the first attempt to map the scaling behaviour of the mass for
both lattice and continuum model systems into one curve.Comment: 9 pages, Revtex, 2 PostScript figure
Biharmonic pattern selection
A new model to describe fractal growth is discussed which includes effects
due to long-range coupling between displacements . The model is based on the
biharmonic equation in two-dimensional isotropic defect-free
media as follows from the Kuramoto-Sivashinsky equation for pattern formation
-or, alternatively, from the theory of elasticity. As a difference with
Laplacian and Poisson growth models, in the new model the Laplacian of is
neither zero nor proportional to . Its discretization allows to reproduce a
transition from dense to multibranched growth at a point in which the growth
velocity exhibits a minimum similarly to what occurs within Poisson growth in
planar geometry. Furthermore, in circular geometry the transition point is
estimated for the simplest case from the relation
such that the trajectories become stable at the growing surfaces in a
continuous limit. Hence, within the biharmonic growth model, this transition
depends only on the system size and occurs approximately at a distance far from a central seed particle. The influence of biharmonic patterns on
the growth probability for each lattice site is also analysed.Comment: To appear in Phys. Rev. E. Copies upon request to
[email protected]
Multifractality in Time Series
We apply the concepts of multifractal physics to financial time series in
order to characterize the onset of crash for the Standard & Poor's 500 stock
index x(t). It is found that within the framework of multifractality, the
"analogous" specific heat of the S&P500 discrete price index displays a
shoulder to the right of the main peak for low values of time lags. On
decreasing T, the presence of the shoulder is a consequence of the peaked,
temporal x(t+T)-x(t) fluctuations in this regime. For large time lags (T>80),
we have found that C_{q} displays typical features of a classical phase
transition at a critical point. An example of such dynamic phase transition in
a simple economic model system, based on a mapping with multifractality
phenomena in random multiplicative processes, is also presented by applying
former results obtained with a continuous probability theory for describing
scaling measures.Comment: 22 pages, Revtex, 4 ps figures - To appear J. Phys. A (2000
On the kinks and dynamical phase transitions of alpha-helix protein chains
Heuristic insights into a physical picture of Davydov's solitonic model of
the one-dimensional protein chain are presented supporting the idea of a
non-equilibrium competition between the Davydov phase and a complementary,
dynamical- `ferroelectric' phase along the chainComment: small latex file with possible glue problems, just go on !, no
figures, small corrections with respect to the published text, follow-up work
to cond-mat/9304034 [PRE 47 (June 1993) R3818
Gel transitions in colloidal suspensions
The idealized mode coupling theory (MCT) is applied to colloidal systems
interacting via short-range attractive interactions of Yukawa form. At low
temperatures MCT predicts a slowing down of the local dynamics and ergodicity
breaking transitions. The nonergodicity transitions share many features with
the colloidal gel transition, and are proposed to be the source of gelation in
colloidal systems. Previous calculations of the phase diagram are complemented
with additional data for shorter ranges of the attractive interaction, showing
that the path of the nonergodicity transition line is then unimpeded by the
gas-liquid critical curve at low temperatures. Particular attention is given to
the critical nonergodicity parameters, motivated by recent experimental
measurements. An asymptotic model is developed, valid for dilute systems of
spheres interacting via strong short-range attractions, and is shown to capture
all aspects of the low temperature MCT nonergodicity transitions.Comment: 12 pages, LaTeX, 5 eps figures, uses ioplppt.sty, to appear in J.
Phys.: Condens. Matte
Comparative proteomic analysis of malignant pleural mesothelioma: Focusing on the biphasic subtype
Malignant pleural mesothelioma (MPM) is a rare cancer originated from pleural mesothelial cells. MPM has been associated with long-term exposure to asbestos. In this work we performed a comparative proteomic analysis of biphasic pleural mesothelioma (B-PM). Tissue biopsies were obtained from 61 patients who were subjected to a diagnostic thoracoscopy. 2D/MS based approach was used for proteomic analysis. The 22 proteins found differentially expressed in B-PM, with respect to benign, were analyzed by Ingenuity Pathways Analysis and compared with those obtained for epitheliod pleural mesothelioma (E-PM). A different activation of transcription factors, proteins and cytokines were observed between two subtypes
Defects in the ferroxidase that participates in the reductive iron assimilation system results in hypervirulence in botrytis cinerea
IndexaciĂłn: Scopus.Abstract
The plant pathogen Botrytis cinerea is responsible for gray-mold disease, which infects a wide variety of species. The outcome of this host-pathogen interac-tion, a result of the interplay between plant defense and fungal virulence pathways, can be modulated by various environmental factors. Among these, iron availability and acquisition play a crucial role in diverse biological functions. How B. cinerea ob-tains iron, an essential micronutrient, during infection is unknown. We set out to deter-mine the role of the reductive iron assimilation (RIA) system during B. cinerea infection. This system comprises the BcFET1 ferroxidase, which belongs to the multicopper oxidase (MCO) family of proteins, and the BcFTR1 membrane-bound iron permease. Gene knockout and complementation studies revealed that, compared to the wild type, the bcfet1 mutant displays delayed conidiation, iron-dependent sclerotium pro-duction, and significantly reduced whole-cell iron content. Remarkably, this mutant exhibited a hypervirulence phenotype, whereas the bcftr1 mutant presents normal virulence and unaffected whole-cell iron levels and developmental programs. Inter-estingly, while in iron-starved plants wild-type B. cinerea produced slightly reduced necrotic lesions, the hypervirulence phenotype of the bcfet1 mutant is no longer observed in iron-deprived plants. This suggests that B. cinerea bcfet1 knockout mutants require plant-derived iron to achieve larger necrotic lesions, whereas in planta analyses of reactive oxygen species (ROS) revealed increased ROS levels only for infections caused by the bcfet1 mutant. These results suggest that increased ROS produc-tion, under an iron sufficiency environment, at least partly underlie the observed infection phenotype in this mutant. IMPORTANCE The plant-pathogenic fungus B. cinerea causes enormous economic losses, estimated at anywhere between 100 billion worldwide, under both pre-and postharvest conditions. Here, we present the characterization of a loss-of-function mutant in a component involved in iron acquisition that displays hyperviru-lence. While in different microbial systems iron uptake mechanisms appear to be critical to achieve full pathogenic potential, we found that the absence of the ferroxidase that is part of the reductive iron assimilation system leads to hypervirulence in this fungus. This is an unusual and rather underrepresented phenotype, which can be modulated by iron levels in the plant and provides an unexpected link between iron acquisition, reactive oxygen species (ROS) production, and pathogenesis in the Botrytis-plant interaction.https://journals.asm.org/doi/epdf/10.1128/mBio.01379-2
Counterion Penetration and Effective Electrostatic Interactions in Solutions of Polyelectrolyte Stars and Microgels
Counterion distributions and effective electrostatic interactions between
spherical macroions in polyelectrolyte solutions are calculated via
second-order perturbation (linear response) theory. By modelling the macroions
as continuous charge distributions that are permeable to counterions,
analytical expressions are obtained for counterion profiles and effective pair
interactions in solutions of star-branched and microgel macroions. The
counterions are found to penetrate stars more easily than microgels, with
important implications for screening of bare macroion interactions. The
effective pair interactions are Yukawa in form for separated macroions, but are
softly repulsive and bounded for overlapping macroions. A one-body volume
energy, which depends on the average macroion concentration, emerges naturally
in the theory and contributes to the total free energy.Comment: 15 pages, 5 figure
- âŠ