We apply the concepts of multifractal physics to financial time series in
order to characterize the onset of crash for the Standard & Poor's 500 stock
index x(t). It is found that within the framework of multifractality, the
"analogous" specific heat of the S&P500 discrete price index displays a
shoulder to the right of the main peak for low values of time lags. On
decreasing T, the presence of the shoulder is a consequence of the peaked,
temporal x(t+T)-x(t) fluctuations in this regime. For large time lags (T>80),
we have found that C_{q} displays typical features of a classical phase
transition at a critical point. An example of such dynamic phase transition in
a simple economic model system, based on a mapping with multifractality
phenomena in random multiplicative processes, is also presented by applying
former results obtained with a continuous probability theory for describing
scaling measures.Comment: 22 pages, Revtex, 4 ps figures - To appear J. Phys. A (2000