1,660 research outputs found
Graphene-Dielectric Composite Metamaterials: Evolution from Elliptic to Hyperbolic Wavevector Dispersion and The Transverse Epsilon-Near-Zero Condition
We investigated a multilayer graphene-dielectric composite material,
comprising graphene sheets separated by subwavelength-thick dielectric spacer,
and found it to exhibit hyperbolic isofrequency wavevector dispersion at far-
and mid-infrared frequencies allowing propagation of waves that would be
otherwise evanescent in a dielectric. Electrostatic biasing was considered for
tunable and controllable transition from hyperbolic to elliptic dispersion. We
explored the validity and limitation of the effective medium approximation
(EMA) for modeling wave propagation and cutoff of the propagating spatial
spectrum due to the Brillouin zone edge. We found that EMA is capable of
predicting the transition of the isofrequency dispersion diagram under certain
conditions. The graphene-based composite material allows propagation of
backward waves under the hyperbolic dispersion regime and of forward waves
under the elliptic regime. Transition from hyperbolic to elliptic dispersion
regimes is governed by the transverse epsilon-near-zero (TENZ) condition, which
implies a flatter and wider propagating spectrum with higher attenuation, when
compared to the hyperbolic regime. We also investigate the tunable transparency
of the multilayer at that condition in contrast to other materials exhibiting
ENZ phenomena.Comment: to be published in Journal of Nanophotonic
How Sensitive Are Bank Managers to Shareholder Value?
Cataloged from PDF version of article.We test for the existence of market discipline by shareholders of banks
with a wide range of ownership structures. Discipline by shareholders manifests
itself through monitoring banks’ level of risk as well as through influencing banks’
management actions. We find that shareholders utilize the relation between stock
returns and different types of risk measures to monitor risky banks. Shareholders
partially influence bank management by responding to decreasing stock returns with
a demand to improve loan quality. Moreover, the influence on management in small
banks is more pronounced compared to large banks
Fano collective resonance as complex mode in a two dimensional planar metasurface of plasmonic nanoparticles
Fano resonances are features in transmissivity/reflectivity/absorption that
owe their origin to the interaction between a bright resonance and a dark
(i.e., sub-radiant) narrower resonance, and may emerge in the optical
properties of planar two-dimensional (2D) periodic arrays (metasurfaces) of
plasmonic nanoparticles. In this Letter, we provide a thorough assessment of
their nature for the general case of normal and oblique plane wave incidence,
highlighting when a Fano resonance is affected by the mutual coupling in an
array and its capability to support free modal solutions. We analyze the
representative case of a metasurface of plasmonic nanoshells at ultraviolet
frequencies and compute its absorption under TE- and TM-polarized, oblique
plane-wave incidence. In particular, we find that plasmonic metasurfaces
display two distinct types of resonances observable as absorption peaks: one is
related to the Mie, dipolar resonance of each nanoparticle; the other is due to
the forced excitation of free modes with small attenuation constant, usually
found at oblique incidence. The latter is thus an array-induced collective Fano
resonance. This realization opens up to manifold flexible designs at optical
frequencies mixing individual and collective resonances. We explain the
physical origin of such Fano resonances using the modal analysis, which allows
to calculate the free modes with complex wavenumber supported by the
metasurface. We define equivalent array dipolar polarizabilities that are
directly related to the absorption physics at oblique incidence and show a
direct dependence between array modal phase and attenuation constant and Fano
resonances. We thus provide a more complete picture of Fano resonances that may
lead to the design of filters, energy-harvesting devices, photodetectors, and
sensors at ultraviolet frequencies.Comment: 6 pages, 5 figure
Photonuclear reactions with Zinc: A case for clinical linacs
The use of bremsstrahlung photons produced by a linac to induce photonuclear
reactions is wide spread. However, using a clinical linac to produce the
photons is a new concept. We aimed to induce photonuclear reactions on zinc
isotopes and measure the subsequent transition energies and half-lives. For
this purpose, a bremsstrahlung photon beam of 18 MeV endpoint energy produced
by the Philips SLI-25 linac has been used. The subsequent decay has been
measured with a well-shielded single HPGe detector. The results obtained for
transition energies are in good agreement with the literature data and in many
cases surpass these in accuracy. For the half-lives, we are in agreement with
the literature data, but do not achieve their precision. The obtained accuracy
for the transition energies show what is achievable in an experiment such as
ours. We demonstrate the usefulness and benefits of employing clinical linacs
for nuclear physics experiments
Measurement of the Associated Production Cross Section in Collisions at TeV
We present the first measurement of associated direct photon + muon
production in hadronic collisions, from a sample of 1.8 TeV
collisions recorded with the Collider Detector at Fermilab. Quantum
chromodynamics (QCD) predicts that these events are primarily from the Compton
scattering process , with the final state charm quark producing
a muon. Hence this measurement is sensitive to the charm quark content of the
proton. The measured cross section of is compared to a
leading-order QCD parton shower model as well as a next-to-leading-order QCD
calculation.Comment: 12 pages, 4 figures Added more detailed description of muon
background estimat
Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the
partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data
sample was collected with the CDF detector at the Fermilab Tevatron collider
during 1992 - 1995 by triggering on the existence of two lepton candidates in
an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) =
1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the
measured decay length and reconstructed momentum of the l- D*+ system. The
charge of the lepton in the final state identifies the flavor of the anti-B0
meson at its decay. The second lepton in the event is used to infer the flavor
of the anti-B0 meson at production. We measure the oscillation frequency to be
Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is
statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
Inclusive jet cross section in collisions at TeV
The inclusive jet differential cross section has been measured for jet
transverse energies, , from 15 to 440 GeV, in the pseudorapidity region
0.10.7. The results are based on 19.5 pb of data
collected by the CDF collaboration at the Fermilab Tevatron collider. The data
are compared with QCD predictions for various sets of parton distribution
functions. The cross section for jets with GeV is significantly
higher than current predictions based on O() perturbative QCD
calculations. Various possible explanations for the high- excess are
discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review
Letter
Bottom Production
We review the prospects for bottom production physics at the LHC.Comment: 74 pages, Latex, 71 figures, to appear in the Report of the ``1999
CERN Workshop on SM physics (and more) at the LHC'', P. Nason, G. Ridolfi, O.
Schneider G.F. Tartarelli, P. Vikas (conveners
Effects of interactions between the constituents of chitosan-edible films on their physical properties
The main objective of this work was to evaluate the effect of chitosan and plasticizer concentrations and oil presence on the physical and mechanical properties of edible films. The effect of the film constituents and their in-between interactions were studied through the evaluation of permeability, opacity and mechanical properties. The effects of the studied variables (concentrations of chitosan, plasticizer and oil) were analysed according to a 2 3 factorial design. Pareto charts were used to identify the most significant factors in the studied properties (water vapour, oxygen and carbon dioxide permeability; opacity; tensile strength; elongation at break and Young's modulus). When addressing the influence of the interactions between the films' constituents on the properties above, results show that chitosan and plasticizer concentrations are the most significant factors affecting most of the studied properties, while oil incorporation has shown to be of a great importance in the particular case of transport properties (gas permeability), essentially due to its hydrophobicity. Water vapour permeability values (ranging from 1. 62 × 10 -11 to 4. 24 × 10 -11 g m -1 s -1 Pa -1) were half of those reported for cellophane films. Also the mechanical properties (tensile strength values from 0. 43 to 13. 72 MPa and elongation-at-break values from 58. 62% to 166. 70%) were in the range of those reported for LDPE and HDPE. Based on these results, we recommend the use of 1. 5% (w/w) chitosan concentration to produce films, where the oil and plasticizer proportions will have to be adjusted in a case-by-case basis according to the use intended for the material. This work provides a useful guide to the formulation of chitosan-based film-forming solutions for food packaging applications.The author MA Cerqueira is a recipient of a fellowship from Fundacao para a Ciencia e Tecnologia (FCT, SFRH/BD/23897/2005) and BWS Souza is a recipient of a fellowship from the Coordenacao Aperfeicoamento de Pessoal de Nivel Superior, Brazil (Capes, Brazil)
- …
